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Mathematics and physics are two foundational disciplines that have greatly
influenced one another over the centuries. Physical mathematics – a discipline
that took shape in the late twentieth century – explores the newly revealed
connections between mathematics and physics. In what follows I set most tech-
nicalities aside and aim to convey the central ideas of this still-young field.

1 Mathematics: The Most Misunderstood Dis-
cipline

To explain the relationship between mathematics and physics, we must first dis-
cuss what each field is about.1 In conversations with friends outside academia,
I am often reminded that many people still think of mathematics as little more
than memorizing formulas and plugging them in to solve problems. As a math-
ematician, I find that reputation grossly unfair, and I would like to take this
opportunity to set the record straight – if only a little.

Returning to the question of what mathematics actually is, it turns out even
mathematicians themselves do not have a single, universally accepted answer.
Still, by pointing out two characteristics that distinguish mathematics from
other branches of the natural and social sciences, we can begin to introduce the
subject.

First, mathematics has no single, overarching end-goal. Instead, anything
that can be described precisely by human intellect – no matter how far removed
it may seem from the natural world or human society – can become a legitimate
object of mathematical study.

Second, mathematics determines the truth of a statement deductively: start-
ing from agreed-upon definitions and axioms, a proof derives the statement step-
by-step. Since mathematics begins from a fixed set of assumptions and proceeds
through purely logical reasoning, any proven theorem is, in this strict sense,

1Historically, for a long period of time, mathematics and physics were not clearly distin-
guished and were regarded as part of natural philosophy. In this article, however, we will
adopt the modern perspective and discuss mathematics and physics as separate disciplines for
convenience.
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absolutely true – a sharp contrast to theories in the natural or social sciences,
which are validated inductively through experiment, observation, or statistics.

Putting aside the abstract description for now, let us illustrate the nature of
mathematics with an example. One of the most important and famous results
in all of mathematics, the Pythagorean theorem, states2 that

For a right triangle with side lengths a, b, c and hypotenuse c,
the equation a2 + b2 = c2 holds.

Although many readers may regard the theorem as so familiar as to be unre-
markable, it is striking – and increasingly beautiful on reflection – that a single
line about an abstract object conveys a universal truth every right triangle, of
any shape or size, must satisfy anywhere it is drawn.

Let us now look at the Pythagorean theorem through the eyes of a mathe-
matician – that is, with curiosity – and pose several natural questions, together
with the answers mathematicians have provided.

• A very natural question is whether we can generalize the Pythagorean
theorem from right triangles to arbitrary triangles.

Given an arbitrary triangle,
can we find a relationship among its three side lengths?

To answer this precisely, mathematicians developed the theory of trigono-
metric functions, and the answer is provided by the law of cosines.

• Whenever mathematicians encounter a theorem, they inevitably ask, ‘Does
the converse hold?’

If a triangle with side lengths a, b, c satisfies a2 + b2 = c2,
is it necessarily a right triangle with hypotenuse c?

The law of cosines again tells us that the answer is ‘Yes.’

• Consider the simple right triangle with a = 1 and b = 1. Its hypotenuse c
must satisfy c2 = 2.

What is c such that c2 = 2?

This question leads to the concept of an ‘irrational number,’ which cannot
be expressed as a ratio of integers. Together, rational and irrational num-
bers form the real numbers, a notion that later underpins calculus and
analysis.

• Can we construct right triangles without using sides whose lengths are
irrational?

2Because space is limited, I will not include proofs of any statements cited in this article.
Yet proving a result is far from a simple, mechanical exercise; for example, mathematicians
have found more than 350 different proofs for the Pythagorean theorem.
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Are there any triples of natural numbers (a, b, c) satisfying
a2 + b2 = c2? If so, how many such triples are there?

Such triples are called ‘Pythagorean triples’; examples include (3, 4, 5),
(5, 12, 13), and so on. They correspond bijectively to rational points on
the unit circle, and hence infinitely many exist.

• Let us generalize further.

For natural numbers n ≥ 3, do there exist natural number
triples (a, b, c) satisfying an + bn = cn?

In the 17th century Pierre de Fermat scribbled that no such triples exist,
a remark that grew into what we now call Fermat’s Last Theorem. For
more than 350 years the problem resisted proof – until Andrew Wiles
finally settled it in 1994, simultaneously confirming a pivotal case of the
far-reaching Langlands program.

• Taking a more philosophical perspective, we might ask:

What, exactly, is a (right) triangle?

Once one realizes that the Pythagorean theorem is logically equivalent
to Euclid’s parallel postulate, the issue becomes a challenge to that very
axiom. On a sphere, for example, you can draw a triangle whose three
interior angles are each 90◦. All three sides then have equal length, so the
familiar relation a2+b2 = c2 simply fails. In other words, the Pythagorean
theorem is not a statement about triangles in general, but about triangles
in Euclidean space.

Figure 1: A spherical triangle with all three angles equal to 90° (Source:
Wikipedia)

Dropping Euclid’s parallel postulate leads to new geometries, called ‘non-Euclidean
geometry.’

• We can also view the Pythagorean theorem as a way to compute the
length of the hypotenuse from the other two sides. From this perspective,
the following question naturally arises.
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How can we determine the length of a general curve?

To find an answer, consider the following figure.

Figure 2: Approximating the length of a general curve by summing the hy-
potenuses of right triangles

Picture slicing the curve into ever finer straight-line segments. In the
limit the curve’s length is the sum of infinitely many segment lengths.
If you treat each tiny segment as the hypotenuse of a right triangle, the
Pythagorean theorem lets you express that length in terms of the seg-
ment’s horizontal and vertical displacements – an idea that, pushed to
the infinitesimal scale, yields the familiar arc-length integral of calculus.
Abstracting this “local Pythagoras” beyond the plane leads to the mod-
ern concept of a manifold, a space whose distances are measured by a
generalized quadratic rule valid even in non-Euclidean geometries. The
systematic study of such spaces is the realm of Riemannian geometry.

To sum up: mathematics often begins with a single, crisply stated fact – say,
the Pythagorean theorem. Guided by curiosity, we abstract, generalize, and rea-
son rigorously until that lone statement flowers into a host of new, universally
valid truths. Each of those truths then becomes its own launching point: we
ask fresh questions, pursue rigorous proofs, and extend the landscape still fur-
ther. In reality there are hundreds, even thousands, of such “starting points,”
every one capable of nurturing an ever-branching tree of results. What makes
the subject truly astonishing is that branches grown from seemingly unrelated
roots frequently converge, revealing deep and unforeseen connections. Uncover-
ing and understanding those hidden links lies at the very heart of contemporary
mathematical research.

2 Physics and Mathematical Physics: The Un-
reasonable Effectiveness of Mathematics in the
Natural Sciences

What is physics? Physics is the science that seeks to understand the fundamental
workings of our universe by studying concepts such as matter, force, energy,
motion, and space-time.
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Then what is the relationship between mathematics – driven by curiosity
to explore abstract structures – and physics, which aims to uncover the laws
governing reality?

Historically, the two fields have been deeply intertwined. From the mathe-
matician’s perspective, physics has served as one of the richest sources of math-
ematical activities, alongside number theory (which studies the properties of
integers) and geometry (which studies shapes and space).

From the physicist’s side, mathematics is essential as the precise language
in which the laws of the universe are formulated and understood.

To make this intimate relationship more concrete, let us look at a few major
physical theories and the branches of mathematics that have evolved alongside
them.

• Classical Mechanics is the study of the relationship between forces and
the motion of macroscopic objects. Sir Isaac Newton, independently of
Gottfried Wilhelm Leibniz, developed calculus to formulate the laws of
motion and universal gravitation that form the foundation of classical
mechanics.

• Electromagnetism is the field that studies phenomena arising from elec-
tricity and magnetism. James Clerk Maxwell unified earlier theories of
electricity and magnetism, expressing these phenomena in terms of the
electric field and magnetic field, governed by just four partial differential
equations – now known as Maxwell’s equations.

• The Theory of Relativity concerns the structure and behavior of space-
time. Albert Einstein’s general theory of relativity described gravity as the
curvature of space-time. To express this physical idea precisely, it turned
out that Riemannian geometry – the subject we reached earlier from the
Pythagorean theorem purely through curiosity and abstraction – and its
variations were indispensable.

• Quantum Mechanics studies phenomena in the microscopic world where
classical mechanics no longer applies. Physicists such as Niels Bohr, Erwin
Schrödinger, Werner Heisenberg, Max Born, and Paul Dirac developed a
new theoretical framework to describe the discontinuous and probabilis-
tic nature of quantum phenomena. This framework relies heavily on the
mathematical languages of linear algebra, group theory, and differential
equations.

As one can see, in most cases the mathematics essential to physics had already
been developed independently within mathematics itself. Physicists were then
able to draw on this existing body of work to articulate their ideas with precision.
That a discipline born from curiosity about abstract structures turns out to be
the right language for describing the laws of the universe is nothing short of
astonishing. Eugene Wigner famously emphasized this by calling it

the unreasonable effectiveness of mathematics in the natural sciences.
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The interplay between mathematics and physics did not end there – in fact,
each field continued to spur advances in the other. Consider first an instance
where physics spurred progress in mathematics. To describe phenomena in quan-
tum mechanics, Paul Dirac introduced a class of “generalized functions” that,
at the time, had no rigorous mathematical foundation. This inspired Laurent
Schwartz to develop the theory of distributions, which has since become funda-
mental across much of modern mathematics.

Conversely, mathematical advances have also led to breakthrough predic-
tions in physics. Through a mathematical study of Einstein’s field equations in
general relativity, the existence of black holes was predicted. Likewise, analysis
of the Dirac equation, formulated within relativistic quantum mechanics, led to
the theoretical prediction of antimatter. These once purely theoretical predic-
tions were later confirmed through experiments and are now essential to our
understanding of the universe.

In this way, the field that develops the mathematical methods needed to
understand physical concepts and solve physical problems, and that applies
mathematical theories to uncover new results in physics, is called mathematical
physics.

To conclude our introduction to mathematical physics, let us now turn to
its “holy grail”: quantum field theory. Quantum mechanics is a physical theory
that describes particles (or waves) in the microscopic world. In contrast, classical
electromagnetism treats concepts like electric and magnetic fields from a purely
classical perspective. However, since particles and fields influence one another,
any theory that aims to fully describe the workings of our universe must also
treat fields in a quantum mechanical framework.

This leads us to quantum field theory (QFT) – a theoretical framework that
successfully combines quantum mechanics with the notion of fields. QFT re-
mains the most comprehensive and internally consistent model we have for ex-
plaining how the universe operates. Among its crowning achievements is the
Standard Model, which describes, with astonishing accuracy, all known forces
and elementary particles – with the sole exception of gravity.

At the heart of quantum field theory lie the correlation functions, schemat-
ically written as

〈O1, · · · ,On〉 =
󰁝

φ∈F(M)

O1(φ) . . .On(φ)e
−S[φ]dφ.

We omit a detailed explanation of the notation here. If F(M) is taken to be the
space of real numbers, then this expression is an integral of the familiar kind
from calculus. An intriguing point is that these field-space integrals are taken
over an infinite-dimensional space and hence are not, in any straightforward
sense, mathematically well-defined. Yet physicists have invented techniques that
extract finite, predictive numbers from these expressions – and those numbers
agree with nearly every experiment to astonishing precision. From a mathemati-
cian’s standpoint, it seems almost miraculous: an undefined integral somehow
yields a finite result that actually corresponds to physical reality. The central
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challenge of mathematical physics, then, is to develop a rigorous mathematical
framework needed to underlie quantum field theory.3 Success in this endeavor
would not only put our most powerful physical theory on solid footing but al-
most certainly lead to entirely new discoveries in physics.

3 Physical Mathematics: The Unreasonable Ef-
fectiveness of Physics in the Mathematical Sci-
ences

Toward the end of the 20th century, a new revolution transformed the relation-
ship between mathematics and physics: ideas originally developed to describe
the universe began solving problems in pure mathematics itself. This marked
the beginning of a new discipline known as physical mathematics. In stark con-
trast to the premise of mathematical physics, one can say physical mathematics
seeks

the unreasonable effectiveness of physics in the mathematical sciences.

Let us illustrate this with an example. Enumerative geometry is the branch of
mathematics devoted to counting the number of geometric objects satisfying
specified conditions. For instance, one may ask, “How many lines pass through
two distinct points in the plane?” Of course, the answer is one. A more intriguing
question was posed by Apollonius of Perga around 200 BCE: “How many circles
in the plane are tangent to three given circles?”

Figure 3: A red circle that is tangent to all three circles drawn in black

Apollonius answered that generically there are always eight such circles.
A historically important question in the field is: “for a generic quintic three-

fold X in P4, how many rational curves of degree d does X contain?” Here d is
a positive integer, and the resulting count nd becomes dramatically harder to
compute as d grows.4 In fact, for d = 1, Hermann Schubert developed what is

3One of the Millennium Prize Problems – the “Yang-Mills Existence and Mass Gap” con-
jecture – is directly concerned with formulating a fully rigorous understanding of a key aspect
of the Standard Model.

4Technically, nd is a “virtual number.” Owing to space constraints, we omit its formal
definition here.
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now called Schubert calculus in 1886 to show n1 = 2875. About a century later,
in 1986, using modern algebro-geometric techniques, mathematicians proved
n2 = 609250. Then in 1991 a group of Norwegian algebraic geometers used
computer-assisted methods to compute n3 = 317206375.

There is, however, a remarkable twist. In 1991, a team of physicists an-
nounced predictions for the entire sequence of numbers nd. When the two groups
met at a conference and compared values, they found that their results for n3

did not agree. Knowing that the physicists had relied on quantum-field-theoretic
ideas and on methods not yet made rigorous, the mathematicians were certain
that the physicists must have made a mistake somewhere.

Yet less than three months later the Norwegian group discovered a bug in
their own computer code. After correcting it, they obtained exactly the same
value of n3 as the physicists. Armed with those confirmed figures, mathemati-
cians then went on to give fully rigorous proofs by 1996, thereby establishing
that every one of the physicists’ original predictions was indeed correct.5

Imagine the shock those enumerative geometers must have felt! Experts in
abstraction and generalization, they found themselves outpaced by physicists in
their own home turf – beaten by∞ to 2 (or, if you want to blame it on computers,
∞ to 3). How could this possibly happen? Had the physicists learned some kind
of black magic?

In fact, they had – its name is duality in physics. Let me now reveal the
magicians’ ‘trick’ for tackling this enumerative problem:

(A) Given any Calabi–Yau threefoldX, one can construct two related quantum
field theories, which we will denote T (X,A) and T (X,B).6 In particular,
one may take X to be the quintic threefold as introduced before.

(B) The enumerative problem of computing nd = nd(X) for the quintic three-
fold X is precisely equivalent to computing certain correlation functions
in the theory T (X,A).

(C) For each Calabi–Yau threefold X, there exists a dual Calabi–Yau threefold
X∨, called its mirror manifold. Then a duality asserts that, although the
two theories T (X,A) and T (X∨, B) look very different, their correlation
functions must coincide.7

(D) The correlation functions of T (X∨, B) can be computed by certain ex-
plicit integrals, which turn out to be far more tractable than the direct
enumerative counts on X.

(E) By equating the two, one conjectures that the numbers nd = nd(X) we
seek are given by the correlation functions of T (X∨, B).

5Those proofs were carried out by purely mathematical methods, independent of the physi-
cists’ approach. From a mathematician’s perspective, the 1991 announcement can therefore
be regarded as a precise conjecture about the values of the nd.

6This construction uses Edward Witten’s idea of a topological twist, producing what are
called topological quantum field theories.

7The existence of mirror manifolds can be motivated by T-duality in string theory, though
from a mathematical standpoint their very existence remains a striking assertion.
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In this way, the duality framework that extracts information about a space X by
relating it to a different space X∨ is known as the theory of mirror symmetry.
As we have seen, the physicists’ reasoning – though not mathematically rigorous
– nevertheless produced correct predictions in infinitely many cases. Unsurpris-
ingly, mathematicians became eager to uncover the “black magic” that seemed
to yield mathematical truths without traditional methods. Since its emergence
in 1991, mirror symmetry has reshaped multiple areas of pure mathematics and
grown into a rich field in its own right.

Mirror symmetry is but one example of physical mathematics. More gener-
ally, one can view the workflow of physical mathematics as three steps:

1 Identify a physical context for a problem originally posed in pure mathe-
matics. (In the mirror symmetry example, steps (A) and (B).)

2 Apply the “black-magic” of physics in that context to derive new physical
results. (In the mirror symmetry example, step (C).)

3 Translate those physical results back into mathematical form. (In the mir-
ror symmetry example, steps (D) and (E).)

As we have seen, applying this three-step recipe in mirror symmetry led to
conjectures that would have been inconceivable by purely mathematical means.

Another striking example comes from the theory of smooth four-dimensional
manifolds. In geometry and topology, one of the fundamental questions is the
classification problem: when are two n-dimensional manifolds the same, and
when are they different? The classification of 1- and 2-manifolds has been
known since the 19th century. For 3-manifolds, Grigori Perelman’s resolution
of Thurston’s Geometrization Conjecture (and, as a special case, the Poincaré
Conjecture) marked a dramatic breakthrough. One might expect the problem
to become even harder in dimensions four and higher, but surprisingly, it is
known that simply-connected manifolds in five or more dimensions can, in fact,
be classified.

In contrast, four dimensions are considered the most difficult case: there is
no analogue of the Geometrization Conjecture as in three dimensions, nor can
one apply the general theory that works in dimensions five and higher. The
most effective method for distinguishing manifolds is to construct and compute
invariants – but for smooth 4-manifolds, even this has proven extremely difficult.
In this context, Simon Donaldson introduced what are now called Donaldson
invariants, using ideas from classical gauge theory. This marked the beginning
of the modern study of smooth 4-manifolds. However, computing Donaldson
invariants was notoriously hard, making substantial progress in the field difficult.
It was at this point that the physicist Edward Witten introduced a much more
effective invariant, based on the following ideas from physical mathematics.

1 He identified the Donaldson invariants of a smooth 4-manifold M with
certain correlation functions in a 4-dimensional non-abelian topological
quantum field theory.
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2 He then showed – using what is now called Seiberg–Witten theory – that
this complicated non-abelian theory is equivalent, at low energy, to a much
simpler abelian gauge theory.8

3 By computing the correlation functions in this abelian theory, one con-
structs the Seiberg–Witten invariants, which carry the same distinguishing
power as the Donaldson invariants but are vastly easier to work with.9

These new invariants, born of physical dualities, were inconceivable by pre-
vious mathematical methods, and they enabled a host of revolutionary results
in the study of smooth 4-manifolds.

More recently, ideas from physics have similarly transformed the geometric
Langlands program – an algebro-geometric incarnation of the arithmetic Lang-
lands program – by suggesting new conjectures, constructing novel objects, un-
covering hidden structures, and even proving theorems that had eluded purely
mathematical approaches.

4 Conclusion

Mathematics and physics are two foundational disciplines with very different
aims and methods. Mathematics pursues precise answers to questions about ab-
stract objects, guided purely by curiosity, while physics seeks to uncover the fun-
damental laws governing our universe. Astonishingly, mathematics has proven
to be an extraordinarily powerful language for developing physical theories –
and this synergy has driven advances in both fields.

In the late twentieth century, even more remarkably, ideas originating in
physics began to yield groundbreaking results within pure mathematics itself.
The field dedicated to exploring these newly revealed connections between math-
ematics and physics is known as physical mathematics. By bringing fresh per-
spectives and contexts to a wide range of mathematical areas, physical mathe-
matics has greatly enriched the direction of pure-math research – and its influ-
ence shows every sign of continuing to expand.

8Physicists use “Seiberg–Witten theory” to describe the exact low-energy effective action
of certain 4-dimensional supersymmetric quantum field theories through renormalization. It
stands as a result of profound significance and power within physics.

9Mathematicians, by contrast, use “Seiberg–Witten theory” to mean the theory of Seiberg–
Witten invariants. Although this requires only a small fragment of the physicists’ framework,
the resulting invariants have become an extraordinarily powerful tool in 4-manifold topology.
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