
쌍곡성의 세계

최인혁

지난 시간에는 쌍곡평면이 왜 쌍곡적인지를 살펴봤습니다. 특히, 리만 계량 및 리만 곡률을 사용하

지 않고, 타일 거리를 이용해 쌍곡성을 설명했습니다. 이번 시간에는 이 관점을 더 발전시켜, 다양체가

아닌 추상적인 군의 기하학을 공부해 보겠습니다.

군(group)이 무엇인지에 관해서는 김상현 교수님의 이전 글(경계에서 바라본 군)에 잘 소개되어

있습니다. 간략하게 말해, 군은 어떤 수학적인 물체가 가지는 대칭들의 모임이라고 이해할 수 있습니

다. 여기서 대칭이라고 하는 것은 비단 선대칭, 점대칭 뿐만 아니라, 추상적인 “불변량”을 보존하는

변환이라고 이해해도 좋습니다. 예를 들어, 원소 N개짜리 집합 S가 가지는 대칭은 그 집합을 어떻게

바라보느냐에 따라 달라질 것입니다. 다만 단순히 집합으로서 S를 바라본다면, S의 대칭이란 곧 S

의 서로 다른 원소들을 서로 다른 원소로 보내는 바꿔치기, 즉 S 상의 일대일 대응에 해당합니다. 이

예시에서, 대칭(즉 일대일 대응)을 두 번 연속해서 적용해도 불변량 (S의 서로 다른 원소가 합쳐지

지 않고 구별됨)은 바뀌지 않습니다. 또, 대칭을 적용해도 정보를 잃지 않기 때문에, 그 역을 취하면

원래 상태로 되돌릴 수 있습니다. 즉 대칭의 역 또한 불변량을 보존합니다. 그렇기에, 가장 추상적인

방식으로 적자면, 군이란 다음 두 성질을 만족하는 수학적인 대상입니다.

1. “잇달아 적용하기”가 가능할 것: 원소 두 개를 합성해서 군의 또다른 원소를 만들 수 있음, 2.

“원상복구”가 가능할 것: 각각의 원소마다, 그 작용을 되돌리는 역(逆)원소가 들어있음.

방금까지의 얘기는 다소 추상적이어서, 구체적인 예시를 조금 더 살펴보겠습니다. 평면 위에 원

x2 + y2 = 1과 수평 방향 직선 y = 0를 그려 보겠습니다. 이제 원의 각 점을 오른쪽으로 1만큼 미는

작용 (x, y) 7→ (x+1, y)를취하면,원은옆으로움직이게됩니다.원래위치에서벗어나게되죠.이말인

즉 “오른쪽으로 1만큼 밀기”는 원의 모양을 보존하는 대칭이 아니라는 것입니다. 하지만 y = 0이라는

수평선은 오른쪽으로 1만큼 밀어도 여전히 y좌표가 0인 수평선이죠. 따라서 “오른쪽으로 1만큼 밀기”

는 y = 0라는 모양이 가지는 대칭이 됩니다.

여기서 1만큼 밀었다는 사실은 전혀 중요하지 않습니다. 3만큼 밀어도, 2.718만큼 밀어도 여전히

y = 0라는 직선은 그 모양 그대로 그 자리에 있습니다. 따라서, “오른쪽으로 x만큼 밀기: x는 임의의

실수” 는 y = 0 직선의 대칭이 됩니다. 이 대칭들은 잇달아 적용하는 것이 가능합니다. 옆으로 a만큼

민 다음 다시 b만큼 밀면, 결과적으로 a+ b만큼 민 것이 됩니다. 즉, 여기서 “잇달아 적용하기”는 실수

상의 덧셈에 해당합니다. 또, 이 대칭들은 원상복구할 수 있습니다. 오른쪽으로 x만큼 미는 작용을 원

상복구하려면 왼쪽으로 x만큼, 다시말해 오른쪽으로 −x만큼 밀면 됩니다. 따라서, 여기서 “원상복구”

는 실수의 양음 부호를 바꾸는 작업에 해당합니다.

이를 통해, 수평선은 실수 집합 R에 해당하는 대칭을 모두 가짐을 알 수 있습니다. 이때, 단순히 집

합으로서 R을 바라보는 것이 아니라, 덧셈 구조 및 부호 구조까지 포함해서 생각하는 것입니다. 즉 R
을 “덧셈군”으로간주할수있는것입니다. (다만 R가수평선의대칭 “전체”에해당한다고얘기하지는

않았습니다. 우리가 놓친 대칭이 더 남아 있는데, 어떤 것일까요?)
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이제 수평선 대신 2차원 평면 전체를 바라보겠습니다. 여기에는 관점에 따라 다양한 종류의 대칭을

정의할 수 있습니다. 거리를 보존하는 대칭을 생각할지, 위상을 보존하는 대칭을 생각할지, 아핀 구조

를 보존하는 대칭을 생각할지 등등... 하지만 “오른쪽으로 1만큼 밀기”와 “위쪽으로 1만큼 밀기”라는

작용이 평면을 그대로 보존한다는 사실은 변하지 않습니다. 이 두 종류의 작용이 평면의 대칭이라고

받아들인다면, 둘을 잇달아 적용하는 작용 또한 대칭이어야겠죠. 즉,

G = {(x, y)라는 벡터 방향으로 밀기 (단, x, y는 정수)}

는 모두 평면의 대칭에 해당한다고 볼 수 있습니다. 이제 “오른쪽으로 1만큼 밀기”를 a, “위쪽으로 1

만큼 밀기”를 b라고 부르기로 합시다. 그러면 G의 각 원소는 a를 정수 번, 그리고 b를 정수 번 잇달아

적용해 만들 수 있습니다. 즉, G 전체는 a와 b로 생성(generate)됩니다. 여기서 특기할 것은, a를 먼저

적용한 뒤 b를 적용하면 ba를 얻고, b를 먼저 적용한 뒤 a를 적용하면 ab를 얻는데, 이 둘은 모두 “(1, 1)

방향으로 밀기”라는 동일한 대칭입니다. 따라서 ab = ba라는 등식이 성립합니다. 즉, G는 “a, b 두 원

소로 생성되면서, ab = ba라는 규칙을 만족하는 군”이라고 말할 수 있습니다. 또, G 안의 원소들 간의

관계는 모두 ab = ba라는 규칙만 알면 모두 기술할 수 있습니다. 예를 들어, G 안에서는 abab = bbaa

라는 사실이 성립하는데, 이는

abab = (ab)(ab) = (ba)(ab) = (ba)(ab) = (ba)(ba) = b(ab)a = b(ba)a = bbaa

이기 때문입니다. 이를 군론학자들은

G ' 〈a, b|ab = ba〉

과 같이 적습니다. 그리고, “등식 규칙” ab = ba는 관련자(relator)라고 부릅니다. G는 생성자 두 개와

관련자 하나로 기술할 수 있는 것입니다. 물론 이 군은 다름아닌 정수 순서쌍 군 Z2입니다.

여기서 G가평면의대칭전체는아닙니다.예를들면,정수가아닌실수벡터방향으로평행이동하는

대칭은다놓치고있죠.그러나, G는평면위의아주좋은이산적인구조를보존합니다.바로정수격자

타일링입니다. 그림 1을 보시면, G의 각 원소는 각 타일을 다른 타일로 꼭 맞게 보내죠.

따라서, 타일 하나를 원점이라고 고정했을 때, 각 타일마다 G의 원소를 하나씩 배정할 수 있습니다.

이제 (0, 0)과 (2, 3) 사이 “거리”를 재고 싶다면, (0, 0) 타일과 (2, 3) 타일 사이의 “타일 거리”를 재면

됩니다. 이런 식으로, G라는 군 위에 거리 구조를 얹어줄 수 있습니다. 다시말해, 우리는 G의 기하학을

공부할 준비가 된 것입니다.

이제 한 단계 더 나아가 보겠습니다. 또다른 군 H를 생각할 것인데, 원소 두 개 a, b로 생성되는

군이면서, 아무런 관련자도 가지지 않는 군이라고 해 보겠습니다. 이말인즉, ab와 ba도 같을 이유가

없어 다르게 취급하겠다는 것입니다. 물론 abab와 bbaa도 H 안에서는 다른 원소입니다. 그러면

H = {a, b, aa, ab, ba, bb, aaa, aab, aba, baa, bba, bab, abb, bbb, . . .}

와 같이 적을 수 있겠네요.

이건 거의 맞는 말이기는 한데, 한 가지 문제가 있습니다. 군의 중요한 성질 중 하나는 “원상복구”라

는 연산이 존재한다는 것인데, 이것을 수식으로 나타내기 위해서는 “아무것도 하지 않음”을 나타내는

원소가 필요합니다. 하지만 지금 H에는 “아무것도 하지 않음” 원소가 빠져 있습니다. 이러한 원소를

항등원(identity)라고 부릅니다. 편의상 e로 나타내기로 하고 H에 집어넣어 주겠습니다.

두번째로, 지금 가지고 있는 원소들만 가지고는 “원상복구”가 불가능합니다. 예를 들어, a라는 원소

에는 b를잇달아적용해도, a2를잇달아적용해도, abab를잇달아적용해도항상더복잡한원소가되어

버립니다.따라서, a를상쇄할수있는원소는 a와 b의조합만으로는만들수없습니다.그래서, a와 b만
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Figure 1. 평면 상의 대칭 a 및 b

가지고 (관련자 없이) 군을 만들고 싶을때, a를 상쇄해주는 녀석과 b를 상쇄해주는 녀석을 넣어주어야

합니다. 그것들을 ā 및 b̄라고 표현하겠습니다. 그려면 이제 H는 a, b, ā, b̄를 조합해 만든 낱말들

H = {e, a, b, ā, b̄, aa, ab, ab̄, āā, āb, āb̄, bb, ba, bā, b̄b̄, b̄a, b̄ā, . . .}

로이루어질것이고,이것이전부입니다. aā같은조합도생각할수있지만,그건 “아무것도하지않음”,

즉 e와 같습니다. a와 ā는 서로 상쇄한다고 정의했으니까요. 낱말들을 연달아 적을 때, 이 규칙 외에

다른 규칙은 아무것도 없습니다. 예를 들어, abā와 aab를 연달아 적면 abāaab = abab가 됩니다.

위와 같이 정의된 군 H를 차수 2짜리 자유군(rank-2 free group)이라고 부릅니다. 그 어떤 관련자로

부터도 자유롭다는 의미에서죠. 이 군 H와 G를 비교해 보려고 하는데, 한 가지 문제가 있습니다. G는

평면의대칭을모은군이기에,평면(+정수격자)이라는기하학을자동으로부여받았습니다.그러나 H

의경우,그저 a, b, a−1, b−1로만들수있는낱말의모임일뿐입니다. a및 b가어떤모양의대칭성으로서

정의된 것이 아니기에, 그런 역할을 할 수 있는 모양을 찾아내줘야만 합니다.

이 모양이 바로 그림 2의 나무 그래프(tree graph) Γ입니다.

이 그래프에서는 모든 꼭짓점이 네 개의 모서리에 닿아 있습니다. 이중 두 개는 꼭짓점을 향해, 두

개는 꼭짓점으로부터 나가는 방향이 주어져 있습니다. 또, a 및 b라는 라벨이 하나씩 붙어져 있습니다.

지금 그림에는 길이 1, 1/3, 1/9, 1/27짜리 변들이 그려져 있는데, 실제로는 이들이 모두 길이 1짜리로

같은 길이라고 생각하시면 됩니다.

이제 그림 3을 보시면 그래프 Γ가 여러 개의 조각, 즉 타일로 분해되어 있습니다. 각각의 타일은

꼭짓점을 하나씩 포함하고 있고, H의 원소인 낱말 하나씩과 대응합니다. 이제 a라는 원소가 이 그래

프의 어떤 대칭에 해당하는지를 살펴봅시다. 먼저, b라는 원소 앞에 a를 적용해 주면 ab라는 원소가

됩니다. 또 baa라는 원소 앞에 a를 적용해 주면 abaa라는 원소가 되구요. 이런 규칙을 좀 더 확장해
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Figure 2. 차수 2짜리 자유군을 위한 그래프 Γ.

보면, 아래와 같이 표로 정리할 수 있겠습니다.

a 7→ aa

abaab 7→ aabaab

bāāb̄ 7→ abāāb̄

e 7→ a

ā 7→ e

ābba 7→ bba

이 작용을 그래프 위에서 기술해 봅시다. 먼저, . . .− āā− ā− e− a− aa− . . .로 이루어진 긴 가로선을
따라 한 칸씩 오른쪽으로 움직여 줍니다. 또, 이 가로선에 달려 있는 각각의 라벨 b 모서리들을 한 칸

옆 라벨 b 모서리로 옮겨 줍니다. 이렇게, 중심 가로선을 따라 한 칸 움직이면서, 라벨 a인 모서리는

라벨 a인 모서리로, 라벨 b인 모서리는 라벨 b인 모서리로 옮겨 주는 작용이 바로 a가 하는 일입니다.

즉, a는 그림 4에 묘사된 “라벨 달린 나무 그래프” γ의 대칭 중 하나입니다.

마찬가지로 b의 작용을 설명할 수 있습니다. 중심 세로선을 따라 한 칸씩 위로 움직이면서, 라벨을

보존하게끔 그래프 전체를 움직이는 작용이 바로 b가 하는 일입니다. 이 또한 Γ의 대칭 중 하나입니

다. 사실은, Γ의 모든 대칭은 a와 b로 빠짐없이 생성해 낼 수 있습니다. 즉, 군 H에 부여할 수 있는
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Figure 3. 그래프 Γ의 타일링.

자연스러운 기하학적인 모델이 바로 그래프 Γ이고, 역으로 Γ의 대칭을 모두 담아낸 것이 바로 군 H

입니다.

그래프 Γ에서 타일 거리는 아주 쉽게 계산할 수 있습니다. 두 꼭짓점 사이 거리는 그 둘 사이의

모서리 갯수와 같습니다. 예를 들어 ab와 abab 사이에는 모서리가 두 개 놓여있기에, 둘 사이 거리는 2

라고 정의할 수 있겠습니다. 여기서 긴요하게 쓰이는 성질이 바로 Γ가 나무 모양이라는 것입니다. 다시

말해, 점 두 개를 잇는 경로는 반드시 유일하며, 우회로가 생기지 않습니다. 아래 그림에서 우회로, 즉

고리(loop)이 달린 그래프와 아닌 그래프의 예시를 보실 수 있습니다.

드디어, 지난 시간에 배운 쌍곡성을 Γ에서 생각해 볼 수 있겠습니다. 예시를 들기 위해, 꼭짓점 세

개 A = e, B = abaa, C = abbā를 잇는 삼각형을 생각해 보겠습니다. 그러면 A와 B를 잇는 선분은

e− a− ab− aba− abaa가 됩니다. 이제, C에서 B로 향하는 최단 경로는 abbā− abb− ab− aba− abaa
입니다.또 C에서 A로향하는최단경로는 abbā−abb−ab−a−e입니다.여기서, CB와 CA는처음두

마디까지는 정확하게 똑같다가, ab라는 AB상의 점을 만나자마자 분기해서 반대 방향으로 향합니다.

그 결과, CB와 CA는 AB를 완벽하게 덮습니다. 마찬가지로, ABC의 각 변은 다른 두 변의 합집합에

쏙 포함되고, 따라서 4ABC는 두께 0짜리 삼각형이라고 볼 수 있겠습니다. (그림 5)

이 상황에서 Γ가 나무 모양 그래프라는 것이 쓰였음은 명백합니다. 일반적으로 나무 모양 그래프는

Gromov의 관점에서 두께 0짜리 쌍곡 공간이 됩니다. 이제 평면 상의 대칭을 담은 군 G로 돌아가 볼

까요. 이 군에서는, 제 아무리 한계를 넉넉하게 줘도, 그 한계보다 더 뚱뚱한 삼각형을 반드시 찾을 수
5



Figure 4. Γ의 대칭 a.

있습니다. 그 예시로, A = (0, 0), B = (30, 0), C = (0, 30)라는 점들을 잡으면, B와 C 사이의 최단

경로는 총 118,264,581,564,861,424개가 있습니다. 그 중에서 어떤 것은 (30, 30)이라는 점을 지납니다.

하지만 A와 B를 잇는 최단 경로는 정확히 한 개고, 그것은 (30, 30)이라는 점 근처에도 오지 못합니다.

B와 C를 잇는 최단 경로 또한 마찬가지입니다. 따라서, B와 C 사이 최단 경로 중에는, AB ∪ BC의
(두께 25짜리) 근방 안에 포함되지 않는 것도 있습니다. 여기서 30이라는 숫자를 키우면 키울수록 이

현상을 더 극명하게 만들 수 있고, 따라서 G는 쌍곡적이지 않습니다.

이런예시들을마음에간직한채,일반적인얘기를잠시소개하겠습니다.이얘기는백형렬교수님의

이전 글에 잘 소개되어 있으니 간략하게만 말씀드리겠습니다.

원소 유한 개 a, b, . . . 로 생성되는 군 G가 주어졌을 때, G의 원소를 빠짐없이 꼭짓점으로 가지는

그래프를 하나 그리겠습니다. 이제, 한 꼭짓점이 어떤 원소 g, 다른 꼭짓점이 g · (생성자) 원소에 해

당한다면, 그 두 꼭짓점을 이어주겠습니다. 이렇게 만든 그래프를 (우리에게 케일리-해밀턴 정리로 잘

알려져 있는) Arthur Cayley의 이름을 따 Cayley 그래프라고 부릅니다. 이때, 군 표현에서의 관련자는

그래프의 루프로 나타날 것입니다. 루프가 아예 없으면 그래프는 나무 모양이 될 것이고, 이것이 아까

본 자유군의 케이스입니다. 반대로, 루프가 다소 빽빽하게 얽히면 평면 모양을 만들 수도 있고, 이것이

정수 순서쌍 군의 케이스입니다.
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Figure 5. 두께 0짜리 삼각형.

여기서 한 가지 짚고 넘어갈 점이 있습니다. Z2의 경우 (1, 0) 및 (0, 1)이라는 벡터로, 차수 2짜리

자유군의 경우 a와 b라는 자연스러운 생성자가 있습니다. 허나 일반적으로, 유한 생성군 G가 주어졌을

때 모든 사람들이 동일한 생성자를 떠올리는 것은 아닙니다. 혹시 SL(3,Z)나 SL(5,Z)와 같은 군을 잘

아시는 독자분들은, 이 군들을 생성하는 행렬 3개 혹은 10개를 대실 수 있을 것입니다. 하지만 두 군

모두, 원소 단 두 개만을 가지고 생성할 수 있습니다. 어떤 사람들은 SL(5,Z)의 10개짜리 생성자를

선호하고, 다른 사람들은 2개짜리 생성자를 선호할 것입니다. 이 두 그룹이 그려내는 Cayley 그래프는

실제로 좀 다른 모양이 됩니다.

그러나 그런 차이는 군의 쌍곡성을 공부할 때 그렇게 중요하지 않습니다. Misha Gromov는 기하군

론의 기초를 닦으면서 다음과 같은 중요한 사실을 관찰했습니다.
7



정리 [Corollary 2.3.E, Gro87]. 군 G의 유한 생성 집합 S 및 T를 생각하자. 만약 S를 기준으

로 만든 G의 Cayley 그래프가 Gromov 쌍곡적이라면, T를 기준으로 만든 G의 Cayley 그래프 또한

Gromov 쌍곡적이다.

따라서, 어떤 군의 Cayley 그래프가 Gromov 쌍곡적인지 논할 때는 생성자의 선택지는 그리 중요

하지 않고, 따라서 군 자체가 가진 고유한 성질로 바라볼 수 있습니다. 앞에서 살펴 보았듯, 자유군은

Gromov 쌍곡적이고 정수 순서쌍 군은 Gromov 쌍곡적이지 않습니다. 사실은, 어떤 군이 Z2를 부분군

으로 가지고 있으면 그 군은 결코 Gromov 쌍곡적일 수 없습니다.

마지막으로, 지난 시간에 살펴 본 쌍곡 평면의 타일링을 가져와 보겠습니다. 이 타일링의 각 타일은

크기가 유한한 컴팩트한 타일임을 유념해 주시기 바랍니다. 쌍곡 평면의 타일링의 대칭을 설명하는

군은 (쌍곡)곡면 군(surface group)이라고 불리는 것인데, 한 예시로 다음과 같은 것이 있습니다.

π1(Σ2) '
〈
a, b, c, d

∣∣ abāb̄cdc̄d̄ = e
〉
.

이군표현에서는정수순서쌍군과마찬가지로관련자가한개인반면,생성자는 4개로훨씬많습니다.

이러한 점 때문에, 이 군의 기하 모델인 쌍곡 평면 혹은 Cayley 그래프는 평평한 유클리드 공간이 아닌

쌍곡적인 공간이 됩니다. 그러나, 쌍곡 평면은 나무 모양 그래프하고는 또 다르게 생겼습니다. 전자는

두께 0만큼 극단적으로 날씬하지는 않은 것 같습니다만, 후자는 극단적으로 날씬하니까요. 조금 더

직관적으로 말해 보면, 쌍곡 평면은 직관적으로 “2차원”인 것 같지만 나무 모양 그래프는 “1차원”

적이라고 생각됩니다. 실제로, 다음과 같은 사실이 성립합니다.

정리.차수 2짜리자유군은쌍곡공간 Hn (n ≥ 2)의 (거리공간으로서의)대칭으로나타난다.그러나

차수 2짜리 자유군은, Hn을 동일한 모양의 컴팩트한 타일들로 덮은 타일링의 전체 대칭군이 결코 될

수 없다.

이 정리 역시 증명은 생략하겠습니다. 다만 일반적으로, Gromov 쌍곡성을 지닌 공간의 대칭성에서

자유 군을 찾는 것은 그리 어려운 일이 아닙니다. 이는 흔히 탁구 보조정리라고 불리는데, 이 또한

백형렬 교수님의 이전 글을 참조하면 좋겠습니다. 정말 어려운 일은, (좋은 타일링의) 대칭성 “전체”

를 모았을 때 자유 군을 만드는 것이 어려운 일이죠.

예를들어,쌍곡평면의대칭중에서차수 2짜리자유군을찾자면다음타일링을생각할수있습니다.

행렬 측면에서는 SL(2,Z)의 지수 6짜리 부분군을 하나 보고 있다고 생각하시면 되겠습니다. 1 사실

은 이 타일링을 보존하는 쌍곡 평면의 대칭 군은 정확히 대칭 a 및 b 두 원소로 생성된 차수 2짜리 자유

군과 일치합니다. 무엇이 문제이냐 하면, 이 타일들은 크기가 유한하지 않다는 사실입니다. 모두 쌍곡

평면의 경계 상에 꼭짓점을 가지고 있습니다. 이말인즉 타일이 컴팩트하지 않고 무한히 길고 표족하게

입이 나 있다는 뜻입니다. 그렇기에 방금 정리와 모순이지는 않습니다.

이말을뒤집어말하면, Gromov쌍곡공간의대칭성으로서군을공부할때,그군에결부된타일링의

조건을 완화하면 완화할수록 다룰 수 있는 군의 자유도가 커진다는 뜻입니다. 아주 제한된 관점에서는

자유군은쌍곡평면을이용해공부할수없지만,컴팩트하지않은타일링을허용함으로써이제공부할

수 있게 되었습니다.

이제 차원을 높여, n차원 쌍곡 공간 Hn의 대칭 군으로 가면 어떨까요? 이는 n차원 쌍곡 다양체의

기본군을 공부하는 것과 같습니다. 이 경우에도 컴팩트한 케이스, 그러니까 컴팩트 쌍곡 다양체의 기

본군으로 나타날 수 있는 군은 극히 제한적입니다. 그러나 컴팩트하지 않은 쌍곡 다양체의 기본군의

종류는 훨씬 다양합니다. 예를 들면 정수 순서쌍 군 Z2도 어떤 (컴팩트하지 않은) 3차원 쌍곡 다양체의

1주어진 군 G의 부분군 H가 지수 n짜리라는 것은, H가 G를 “n등분한 것”이라는 뜻입니다. 더 정확히 말하자면, H라는

조각을 n개 준비해 겹치지 않게 이리저리 배치하면 G를 복원할 수 있다는 뜻입니다.
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Figure 6. Farey 그래프의 일부.

기본군으로 나타납니다. 군 자체로서는 극히 비-쌍곡적인데, 여전히 쌍곡 공간의 (부분적인) 대칭군으

로 나타날 수 있습니다.

다시 정리해 보겠습니다. 우리는 군이 어떤 쌍곡 공간의 대칭성으로 어떻게 나타날 수 있는지 구체

적인예시들을보았습니다. (1)자유군과그 Cayley그래프가한예시이고, (2) Z2가 3차원쌍곡공간의

대칭군으로 나타는 것이 다른 예시입니다. 이 둘은 양 극단에 서 있습니다. (1)에서 나타나는 타일링은

매우 좋은 성질을 가지기에, 자유군의 대수적인 성질(예를 들어 관련자가 아무것도 없다는 사실)을

공간의기하학으로부터뽑아낼수있습니다.다만,이러한타일링은매우한정적입니다.몇몇흥미로운

군들은 결코 이 조건 하의 타일링으로 공부할 수 없습니다. 반면에, (2)에서 다루는 타일링은 그 성질이

다소 거칩니다. 따라서 공간이 쌍곡적이더라도 군은 평평할 수 있는 것입니다. 이 관점에서 다룰 수

있는 군의 종류는 엄청나게 늘지만, 그들의 공통적인 이론을 만들기가 힘들다는 뜻이기도 합니다.

둘 사이에 있는 적당한 타협점이 있을까요? 즉, 컴팩트한 타일링 대신 좀더 약한 성질을 만족하는

타일링을 생각하면, 아주 완벽하게 쌍곡적이지도 않지만, 어느 정도의 쌍곡성은 가지는 다양한 군들

을 다룰 수 있지 않을까요? 이것이 바로 상대적 쌍곡성 (relative hyperbolicity) 및 비원통적 쌍곡성

(acylindrical hyperbolicty)의 영역입니다. 다음 시간에는 이 새로운 예시들을 만나보겠습니다.

[Gro87] Gromov, M. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res.

Inst. Publ., pages 75–263. Springer, New York, 1987.
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