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Abstract. 본 원고에서는 위상적인 원의 자기위상동형사상 군 안에 자유 부분군이 존재하는지를 살펴

보고자 한다. 이는 약한 위상적인 Tits 대안(Tits alternative)이라는 이름으로 알려져 있고, Ghys가 질

문한 뒤 Margulis가 처음 증명한 것인데, 이후 Ghys가 새로운 접근을 제시한 바 있다. 여기에서는 학부

수준의 위상수학 및 해석학을 상정한 기초적인 논법을 설명하고자 한다.
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1. 서론

본 논문에서는 위상적인 원 S1의 자기위상동형사상 군 Homeo(S1) 안에서의 자유 부분군의 존재

성을 공부하고자 한다. 이는 곧 Étienne Ghys가 묻고 Gregory Margulis가 [Mar00]에서 증명한 원의

위상동형사상 군에 대한 약한 위상적인 Tits 대안(Tits alternative)이다. 그 내용은 다음과 같다.

원의 위상동형사상으로 이루어진 임의의 군 G는 다음 중 정확히 하나를 만족한다는 것인데, (i) G

의 모든 원소가 동시에 보존하는 원 위의 확률 측도가 존재하거나 혹은 (ii) G의 원소 두 개 f , g 및

서로 겹치지 않는 원의 열린 부분집합 U1, U2, V1, V2가 존재하여,

f
(
S1 \ U1

)
⊆ U2, f

(
S1 \ U2

)
⊆ U1, g

(
S1 \ V1

)
⊆ V2, g

(
S1 \ V2

)
⊆ V1

가성립한다는것이다.이때 f, g의순서쌍 (f, g)를 Schottky순서쌍이라부른다.만약 G의모든원소가

동시에 고정하는 점이 존재하지 않고 G의 작용이 강하게 팽창적(strongly expansive)이라면 반드시

(ii)의 경우에 해당하며, 이때 상기한 열린 집합들 Ui, Vi는 모두 열린 구간(interval)으로 잡을 수 있다.

더욱 구체적으로, Ghys가 [Ghy01]에서 기술한 버전은 다음과 같다.

정리 1.1. Homeo(S1)의 임의의 부분군 G에 대해, 다음 중 정확히 한 가지가 성립한다.

(1) G의 모든 원소가 동시에 보존하는 원 위의 확률 측도가 존재한다.

(2) 준켤레바꾸기(semiconjugation) 및 유한 차수 덮음(finite-degree covering)을 통해 원래 G의

작용에 잘 들어맞는 또다른 G의 작용을 건설할 수 있는데, 서로 겹치지 않는 원의 열린구간에

결부된 Schottky 순서쌍을 이 새로운 작용으로부터 찾을 수 있다. 자세히 말하자면,

• 단조증가성이고(monotone) 차수가 1인 원의 연속사상 c : S1 → S1,

• 원의 자가 덮음 사상 π : S1 → S1

이 존재하고, 또 군 맞춤 사상 ρ : G→ ρ(G) ≤ Homeo(S1)이 존재하여, 각 g ∈ G마다

π ◦ c ◦ g = ρ(g) ◦ π ◦ c

가 성립하는 한편, ρ(G)의 원소 두 개 f, g 및 서로 겹치지 않는 원의 열린 구간 I1, I2, J1, J2

가 존재하여,

f
(
S1 \ I1

)
⊆ I2, f−1

(
S1 \ I2

)
⊆ I1, g

(
S1 \ J1

)
⊆ J2, g−1

(
S1 \ J2

)
⊆ J1,
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가 성립한다.

정리 1.2. Homeo(S1)의 어떤 부분군 G가 원 위에서 근접적인(proximal) 작용을 가지면서 군 원소

전체가 동시에 보존하는 고정점을 가지지 않는다. 그러면 G는 열린 구간에 결부된 Schottky 순서쌍을

가지는즉, G의 원소 f, g 및 서로 겹치지 않는 원의 열린 구간 I1, I2, J1, J2가 존재하여,

f
(
S1 \ I1

)
⊆ I2, f−1

(
S1 \ I2

)
⊆ I1, g

(
S1 \ J1

)
⊆ J2, g−1

(
S1 \ J2

)
⊆ J1,

가 성립한다.

위정리들에서기술하는 Schottky순서쌍은차수 2인자유부분군을생성한다 (Margulis).이는흔히

탁구 보조정리(ping-pong lemma)라고 불리는 것이다.

이논문에서는Margulis와 Ghys의방법론을큰틀에서따라가되,세세한부분을조금바꾸어설명하

려고 한다. 이는 즉, 컴팩트한 Lie 군의 Haar 측도 혹은 원의 위상동형사상의 회전수(rotation number)

을 사용하지 않은 채, π 및 c라는 사상들을 직접 빚어 내겠다는 뜻이다.

원의 위상동형사상 군은 저차원 위상수학 및 동역학의 다양한 관점에서 연구되어 왔다. 이 원고에

서는 아쉽게도 그 관점들을 모두 다룰 수는 없겠으나, 더 자세한 맥락을 알고 싶은 독자들은 Ghys의

survey [Ghy01] 및 Navas의 survey [Nav11]를 참고하면 좋겠다.

2. 원의 위상동형사상

위상공간 및 측도공간으로서, 원 S1는 실수 집합 R을 Z ' 〈z 7→ z + 1〉의 작용으로 자른 것이다.

이를 기록하는 사영(projection) Π : R→ S1을 기억하도록 하자.

원 S1의자기위상동형사상(self-homeomorphism)들은자기들끼리군을이룬다.이군을 Homeo(S1)

로 표기한다. Homeo(S1)은 매우 많은 부분군을 품고 있기에 어떤 군들이 Homeo(S1)의 부분군으로

나타날 수 있는지 물어볼 수 있다. 이를 위해 다음 개념을 정의하자. 어떤 군 G로부터 Homeo(S1)로

향하는 군 맞춤 사상 (group homomorphism) ϕ : G→ Homeo(S1)를 다른 말로 S1상의 작용(action)

이라고 부른다. 다시 말해, 어떤 군 G가 원 S1에 작용한다는 것은, 군 맞춤 사상 ϕ : G→ Homeo(S1)

를 하나 정한다는 것이다.

연속함수 f : S1 → S1를 생각하자. 이때, Π ◦ f̃ = f ◦ Π가 성립하게끔 하는 연속함수 f̃ : R → R
가 존재한다. 이때 f̃를 f의 R로의 끌어올림(lift)이라고 부른다. f의 끌어올림 f̃는 유일하지는 않지만

z 7→ z + 1의 작용을 통해 모든 선택지 사이를 오갈 수 있다. 더욱이, f̃(x + 1) − f̃(x)는 정수 값을

가지며, 그 값은 f̃의 선택지 혹은 x ∈ R의 선택지에 의존하지 않는다. 이 정수 값을 f의 차수(degree)

라고 부른다. 합성함수의 차수는 두 성분 함수의 차수의 곱이고, 이로써 원의 위상동형사상의 차수는

반드시 1 혹은 −1이어야 함을 알 수 있다. 또한, 차수가 1인 위상동형사상들의 집합은 Homeo(S1)의

지수 2짜리 부분군을 이루고, 이를 Homeo+(S1)로 표기한다. 차수가 1인 위상동형사상을 다른 말로

방향 보존 위상동형사상이라고 부르기도 한다.

한편, 주어진 연속함수 f : S1 → S1에 대해, 그 끌어올림 f̃는 유일하지 않지만 끌어올림의 단조증가

성, 단조감소성 및 단조성은 잘 정의된다. 이를 바탕으로 f의 단조증가/감소성 및 단조성을 정의한다.

2.1. 켤레바꾸기 및 준켤레바꾸기(conjugation and semiconjugation). S1을 위상공간으로 보면

서 S1의위상동형사상 f의위상적동역학을분석할때,이를테면 f(x)가 x보다 1/3바퀴앞서있는지를

묻는 것은 그다지 의미 있는 질문이 아니다. S1의 각 점에 매겨진 좌표, 즉 거리 구조를 신경 쓰지 않기

때문이다. 다시 말해, f의 위상적 동역학을 공부하고 싶다면 S1의 위상 구조를 보존하는 좌표 변환에

의해 좌우되지 않는 성질 혹은 불변량을 알아야 한다. 이에 다음 개념이 필요해진다.
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정의 2.1. 두 위상동형사상 f, g ∈ Homeo(S1)가 서로의 위상적 좌표변형(topological conjugate)

이라는 것은 어떤 위상동형사상 h ∈ Homeo(S1)가 존재하여 h ◦ f = g ◦ h가 성립한다는 것이다.

이때, g = hfh−1을 f의 h에 의한 위상적 좌표변형이라고 한다. 다른 관점에서 보면, 위상동형사

상 h ∈ Homeo(S1)가 주어질 때마다 f 7→ hfh−1라는 Homeo(S1) 안의 자기사상이 정의되는데, 이

자기사상을 h에 의한 켤레바꾸기(conjugation by h)라고 부른다.

마찬가지로, 어떤 군 Γ의 원에 대한 두 작용 Φ1,Φ2 : Γ → Homeo(S1)가 서로의 위상적 좌표변형

이라는 것은, 어떤 위상동형사상 h ∈ Homeo(S1)가 존재하여 각 g ∈ Γ마다 h ◦ Φ1(g) = Φ2(g) ◦ h가
성립한다는 것이다.

어떤 위상동형사상을 위상적으로 켤레바꾸더라도 (위상적) 동역학적인 성질은 하나도 잃지 않는다.

한편, 어떤 위상동형사상들은 원의 특정 부분에서는 복잡한 동역학을 보이고, 다른 부분에서는 재미없

는 동역학을 보인다. 이때, 전자 영역을 그대로 남겨 복잡한 동역학적 정보는 살리면서 후자 영역은 각

연결성분을 한 점으로 압축해 자명한 정보는 무시하면 편리하다. 이러한 정보의 축약은 (위상동형사상

대신) 단조적이고 차수가 1인 연속사상이 담당하기에 다음 개념이 필요해진다.

정의 2.2. 두 위상동형사상 f, g ∈ Homeo(S1)에 대해, g가 f의 준좌표변형(semiconjugate)이라는

것은 단조적인 차수 1짜리 연속사상 h : S1 → S1가 존재하여 h ◦ f = g ◦ h가 성립한다는 것이다.

마찬가지로, 어떤 군 Γ의 원에 대한 두 작용 Φ1,Φ2 : Γ → Homeo(S1)가 준좌표변형이라는 것은,

단조적인 차수 1짜리 원의 연속사상 h가 존재하여 각 g ∈ Γ마다 h ◦ Φ1(g) = Φ2(g) ◦ h가 성립한다는
것이다.

명제 2.3. Homeo(S1)의 임의의 부분군 G에 대해 다음 셋 중 정확히 하나가 성립한다.

(1) 유한한 G-궤도가 존재한다. 즉, #{gx : g ∈ G} < +∞인 점 x을 원에서 잡을 수 있다.

(2) 모든 G-궤도가 원 안에서 조밀하다. 다시 말해, 그 어느 x ∈ S1에 대해서도 G ·x ⊆ S1의 닫음

(closure)이 원 전체다.

(3) G에 불변하는 (공집합이 아닌) 닫힌 부분집합 중 최소한이고, 무한집합이면서 원 전체가 아닌

K ( S1이 존재한다.

(3)의 경우에는 G에 불변하는 (공집합이 아닌) 닫힌 부분집합 중 최소한인 K는 유일하고, Cantor

집합과 위상동형이며, 그 어느 G-궤도의 집적점 집합에도 포함된다. (∗)

Proof. S1의 부분집합에 대한 다음 성질을 먼저 정의하자. 먼저

S := {A ⊆ S1 : A는 공집합이 아닌 컴팩트 집합이면서 G에 불변함}

를 정의하자. 그러면 S의 원소 간에는 집합 포함관계라는 부분순서(partial order)가 정의되어 있다.

이제,어떤 A ∈ S가 S 안에서최소한(minimal)일때, A가 G-최소한이다라고하겠다.이제 x ∈ A를임
의로하나뽑은뒤, x의 G-궤도 G ·x를생각하자. A가 G-불변이기에 G ·x는 A에포함된다.그러면 G ·x
의 닫음 G · x 역시 A의 부분집합이면서 G-불변이고, 닫혀 있기까지 하다. 이에 A의 최소성으로부터

A = G · x임이 따라나온다. 이 관찰을 요약하면 다음과 같다.

주장 2.4. S1의 부분집합 A가 G-최소한이라고 하자. 그러면 그 어느 x ∈ A에 대해서도, x의 G-궤도

G · x의 닫음 G · x는 A와 일치한다.
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이제 원래 명제로 돌아가자. Zorn의 보조정리에 의해, G-최소한인 부분집합은 적어도 하나는 존재

한다. 그중 하나를 K라고 이름붙이자. K의 집적점 집합

K ′ := {x ∈ S1 :서로 다른 k1, k2, . . .가 있어 lim
i
ki = x가 성립함}

과 K의 경계 ∂K := K \ intK는 각각 G-불변인 K의 닫힌 부분집합이 된다. 이때 다음 중 하나가

성립한다.

(a) K ′ = ∅: 이는 K가 유한집합이라는 뜻이다. 주장 2.4에 의해, 그 어느 x ∈ K에 대해서도 K는

x의 G-궤도 G · x와 일치한다. 즉 (1)이 성립한다.

(b) ∂K = ∅: 이는 K = S1을 의미하며, 주장 2.4에 의해, 그 어느 x ∈ K = S1에 대해서도 K는

G · x의 닫음 G · x와 일치한다. 즉 (2)가 성립한다.

(c) K ′도 ∂K도 공집합이 아님: 이 경우 K는 무한집합이고 원 전체는 아니다. 즉 (3)이 성립한다.

한편 결론부의 (1)과 (2)가 양립할 수 없음은 분명하다. 따라서 [(a) ⇒ (1) ⇒ (a) 혹은 (c)] 및 [(b) ⇒
(2)⇒ (b) 혹은 (c)]가 성립한다. 여기에 더해 [(3)⇒ (∗)]를 증명하기만 하면,

[(c)⇒ (3)⇒ (∗)⇒임의의 G-최소한인 집합은 Cantor 집합⇒ (a)도 (b)도 아님]

임을 알 수 있어, [(a)⇔ (1)], [(b)⇔ (2)], [(c)⇔ (3)]을 완성하게 된다.

이제 [(3)⇒ (∗)]을 완성하기 위해서는 다음을 관찰하면 된다.

주장 2.5. S1의 부분집합 A가 G-최소한이면서 무한집합이고 원 전체는 아니라고 하자. 그러면 A는

Cantor 집합과 위상동형이다. 그러면 임의의 x ∈ S1에 대해, G · x의 집적점 집합은 A를 포함한다.

실제로, 주장 2.4 및 주장 2.5를 상정하고, K 및 K1가 G-최소한임과 동시에 K가 조건 (c)를 만

족한다고 가정하자. 그러면 (공집합이 아님을 이용해) K1의 임의의 원소 x를 뽑으면 G · x의 극점
집합은 K를 포함하는데, 이 극점 집합은 주장 2.4에 의해 K1에 포함된다. 따라서 K ⊆ K1이고, K1의

최소성으로부터 K = K1임을 이끌어낼 수 있다.

이제 주장 2.5를 증명하는 일만 남았다. 먼저, A가 무한집합이라는 것은 A′가 공집합이 아니라는 것

이고, A가 원 전체가 아니라는 것은 ∂A가 공집합이 아니라는 것이다. A가 G-불변인 닫힌 집합이기에

이두집합 A′ 및 ∂A는 A에포함된 G-불변인닫힌집합이다.그러면 A의최소성으로부터 A′ = ∂A = A

임을 알 수 있다. 이는 곧 A가 Cantor 집합과 위상동형이라는 뜻이다.

이제 원 위의 임의의 점 x를 잡고 그 궤도 G · x를 생각하자. 만약 x ∈ A라면 G · x는 A에 포함된

(공집합이 아닌) G-불변인 닫힌 집합이기에, A의 최소성으로부터 G · x = A임을 알 수 있다. 다음으로

x가 A 밖에 있다고 가정하자. 그러면 x는 S1 \ A의 어떤 연결성분 (a, b) ⊆ S1에 포함되어 있다. 이제

임의의 y ∈ A가 G ·x의 극점임을 결론짓기 위해서는, y의 임의의 근방 N에 대해 N ∩ (G ·x)의 크기가

무한하다는 것만 보이면 된다.

여기서 A가 완벽집합(perfect set)이기 때문에 N은 무한히 많은 A의 원소를 가지고 있다. 임의의

자연수 k를 정하고, A ∩N의 원소 2k + 1개를 뽑은 뒤 (근방 N 안에서 정의된 방향에 따라) 왼쪽부터

순서대로 a0, a1, . . . , a2k이라고 이름붙이자. 이제 각 i = 1, . . . , k마다 주장 2.4에 의해 a2i−1은 G · a
의 극점이고, 따라서 gia ∈ (a2i−2, a2i)이게끔 하는 gi ∈ G가 존재한다. 이때 gi(a, b)는 한쪽 끝점이

[a2i−2, a2i] 안에 위치하는 S1 \A의 연결성분이고, a2i−2 및 a2i는 S1 \A 바깥에 있음을 주목하라. 이는

gix ∈ (gia, gib) ⊆ (a2i−2, a2i) ⊆ N을 의미한다. (a0, a2), (a2, a4), . . . , (a2k−2, a2k)는 서로 겹치지 않는

구간들이기에, g1x, . . . , gkx는 모두 서로 다른 x의 G-궤도 점들이다. 요약하자면, 임의의 자연수 k에

대해 N ∩ (G · x)의 크기는 k 이상이다. 다시 말해, N ∩ (G · x)의 크기는 무한하다. �
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위 명제에서의 (2)의 경우에, 즉 G-궤도가 원 안에서 조밀할 때 G의 작용이 최소한이다(minimal)

라고 한다. 최소한이 아닌 작용의 경우 G-궤도가 신경쓰는 영역, 즉 G · x만을 남기고 나머지를 정의
역에서 삭제함으로써 최소한인 작용으로 환원할 수 있다는 점에서 이 용어의 의미가 드러난다. 다만,

이 과정은 G · x가 충분히 커서 여전히 원을 이룰 수 있을 때만 유용하다. 위 명제 속 (1)에서의 유한한

G-궤도는 원을 이루기에 너무 작지만, (3)에서의 Cantor set은 S1로의 전사함수를 가지기에 상기한

전략을 적용할 수 있다. 위 명제에서의 (3)의 경우, G가 예외적인 최소 집합 K를 가진다고 말하기도

한다.

명제 2.6. 만약 Homeo+(S1)의 한 부분군 G가 예외적인 최소 집합을 가질 경우, 준켤레바꾸기를 통해

최소한인 작용으로 바꿀 수 있다. 다시 말해, G로부터 Homeo+(S1)의 다른 부분군 G′로 향하는 군

맞춤 사상 ρ : G→ G′ 및 단조적인 차수 1짜리 연속사상 h : S1 → S1가 존재하여 h ◦ g = ρ(g) ◦ h가
성립한다.

Proof. G의 예외적인 최소 집합을 K라고 하자. 그러면 S1 \ K는 가산 개의 서로 겹치지 않는 열린
구간으로이루어져있는데,각각의열린구간의닫음을한점으로묶어내면그몫공간(quotient space)

은여전히위상적인원이된다.다시말해, S1\K의각연결성분및그양끝점을한점으로축약시키는
단조적인연속함수 h : S1 → S1가존재한다는것이다. (K가이를테면표준적인 Cantor집합이라면 h

는 Cantor 3진 함수로 구현할 수 있다.) 이때 임의의 y ∈ S1에 대해 h−1(y)는 S1 \K의 한 연결 성분의
닫음이거나 혹은 한 점이다. 즉 h−1(y)는 어떠한 경우에도 연결된 부분집합이고, h의 차수는 ±1임을

알 수 있다. 여기서 치역인 원에 적절한 방향을 줌으로써 h의 차수가 1이게 할 수 있다.

이제각 g ∈ G에대해 ρ(g)를구성해보자.임의의점 y ∈ S1에대해, h−1(y)는 S1\K의한연결성분
의 닫음이거나 혹은 한 점이다. g는 최소 집합인 K를 보존하기에, S1 \K의 연결성분을 연결성분으로
보낸다. 따라서, g(h−1(y))는 여전히 S1 \K의 한 연결성분의 닫음이거나 혹은 한 점이고, 따라서 h를

취하면 한 점으로 묶여 나온다. 이 덕분에, y의 ρ(g)에 의한 함숫값을
(
ρ(g)

)
(y) := (h ◦ g)(h−1(y))로

잘 정의할 수 있다. 주어진 g에 대해, f ◦ h = h ◦ g를 만족하는 함수 f : S1 → S1는 상술한 ϕ(g)밖에

없다 (†).
이렇게 정의한 ρ(g)가 연속일 충분조건은 임의의 열린 구간 U의 역상 V := (ρ(g))−1(U)가 열린

구간이라는 것이다. 여기서 h ◦ g가 단조적인 연속함수이기에 h−1(V ) = (h ◦ g)−1(U)는 열린 구간

인데, 그 끝점들은 S1 \K 안에 위치할 수는 없다 (∗). 실제로, 만약 예를 들어 h−1(V )가 S1 \ K의
어떤 연결성분 I와 조금이라도 겹친다면, 모든 x ∈ Ī에 대해 h(x)는 동일하고 이 값이 V에 들어간다.

따라서 h−1(V )는 Ī 전체를 포함하고, h−1(V )의 왼쪽 끝점도 오른쪽 끝점도 Ī 바깥에 형성된다. (∗)를
만족하는 열린 구간의 h-이미지는 마찬가지로 열린 구간이기에 증명이 끝난다.

마지막으로, ρ가 G의 연산과 잘 어울리는지를 확인하자. 정의로부터

h ◦ g1 ◦ g2 = ρ(g1) ◦ h ◦ ρ(g2) = ρ(g1) ◦ ρ(g2) ◦ h

임을 관찰할 수 있고, 성질 (†)로부터 ρ(g1)ρ(g2) = ρ(g1g2)을 이끌어낼 수 있다. 특히, ρ(id) = id임을

알기에 각 g ∈ G마다 ρ(g)ρ(g−1) = ρ(g−1)ρ(g) = id가 성립한다. 연속인 역함수를 가지는 연속함수인

ρ(g)는 S1의 자기위상동형사상이어야만 한다. 이로써 증명이 끝난다. �

2.2. 팽창성(Expansivity) 혹은 근접성(Proximality). 이 절에서는 Homeo(S1)의 부분군에 대한

동역학적인 특성을 하나 정의하고, Homeo(S1)의 부분군이 만족할 수 있는 이분법적인 상황을 기술할

것이다. 이는 정리 1.1을 위한 예비적인 단계로 볼 수 있다.
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정의에 앞서 Homeo(S1) 안에 있는 부분군 두 개를 살펴보겠다. 이 논의에서 원 S1을 복소평면 C
안의 단위원 {z : |z| = 1}과 동일시하겠다. 이 원은 Poincaré 계량이 얹어진 원판 D := {z : |z| < 1}의
가장자리로 볼 수 있으며, D의 등거리사상 군

PSU(1, 1) :=

{(
α β

β∗ α∗

)
: α, β ∈ C, |α|2 − |β|2 = 1

}

은 자연히 S1에 작용한다. 즉 PSL(1, 1)을 Homeo(S1)의 부분군으로 간주할 수 있다.

PSU(1, 1) 안에는 원점 기준 회전

(
eiθ/2 0

0 e−iθ/2

)
들이 살고 있다. 이 회전들의 집합 R은 더 작

은 부분군을 이루며, S1 위의 호 길이를 보존한다. 즉 원점 기준 각도를 이용해 S1 위에 거리 구조 d

혹은 길이 측도 µ를 구성하면, R은 (S1, d)의 등거리사상 군이 되고 또 (S1, µ)라는 확률 공간의 측도

보존사상 군이 된다. 이렇게 S1상의 어떤 확률 측도 혹은 거리 구조를 보존하는 부분군이 R만 있는
것은 아니다. 예를 들면, 원점 0을 다른 점 p ∈ D로 옮기는 행렬 Mp ∈ PSU(1, 1)을 생각하면, Mp

에 의한 R의 켤레바꿈(conjugate) Rp := MpRM−1p 은 이제 M∗pd 및 M∗pµ라는 새로운 거리 구조 및

확률 측도를 보존하는 군이 된다. 비록 M∗pd와 d가 다른 거리 구조이기는 하지만 상수배 동치 관계에

있다. 즉 C−1d ≤ M∗pd ≤ Cd이 성립하게끔 하는 양수 C가 존재한다. 따라서 Rp는 비록 d를 보존하

지는 않으나 심각하게 뒤틀 수는 없다. 다시 말하자면, Rp의 원소들은 (S1, d) 위에서 균일연속하다

(equicontinuous).

한편, D는 곡률이 -4인 쌍곡 곡면들의 보편적 덮개 공간(universal covering space)이기도 하다. 따

라서 PSU(1, 1) 안의 이산 군(discrete group)들 D에 어떻게 작용하는지를 보는 것이 중요한데, 이러한

군들을 Fuchsian 군이라고 부른다. 이제 유한한 넓이를 가지는 쌍곡 곡면을 하나 생각하자. 이 곡면

은 D를 어떤 Fuchsian 군 G ≤ PSU(1, 1)로 잘라낸 것인데, 이 G에는 반드시 균일연속성을 해치는

원소가 존재한다. 구체적으로, G의 원소인 행렬 f ∈ G 및 S1 위의 서로 다른 점 x 및 y가 존재하여,

S1 \ y 안의 임의의 컴팩트 집합 K에 대해 limi→+∞ diam(y ∪ f iK) = 0이 성립하고, S1 \ x 안의 임
의의 컴팩트 집합 K에 대해 limi→+∞ diam(x ∪ f−iK) = 0이 성립한다. 이러한 G의 원소를 쌍곡행렬

(hyperbolic matrix) 혹은 쌍곡적인 원소(hyperbolic element)라고 부른다. 또, x를 f의 작용에 대한

밀개(repeller), y를 끌개(attractor)라고 부른다. 이 두 점은 정확히 f의 작용에 대한 S1 상의 고정점

(fixed point theorem)이다.

실은, G에는 본질적으로 다른 쌍곡적인 원소가 수없이 많이 존재한다. 구체적으로, f의 작용에 대한

밀개 x 및 끌개 y, 그리고 g의 작용에 대한 밀개 x′ 및 끌개 y′ 네 점이 모두 서로 다르게끔 G의 원소 두

개 f, g ∈ G를 찾을 수 있다. 이 경우, x, y, x′, y′를 각각 포함하는 충분히 작은 열린 구간들 I1, I2, J1, J2

를 잡으면 이들 열린 구간들 또한 서로 겹치지 않는다. 또한 f 및 g의 동역학이 쌍곡적이기에 충분히

큰 N에 대해

fN
(
S1 \ I1

)
⊆ I2, f−N

(
S1 \ I2

)
⊆ I1,

gN
(
S1 \ J1

)
⊆ J2, g−N

(
S1 \ J2

)
⊆ J1

가 성립한다. 이는 곧 정리 1.1에서 얻고자 했던 결론 중 한 경우인데, 우리 논증에서 중요한 역할을

하는 상황이기에 이름을 따로 붙이겠다.

정의 2.7. 원의 자기위상동형사상 f와 g를 생각하자. 만약

f
(
S1 \ U1

)
⊆ U2, f

(
S1 \ U2

)
⊆ U1, g

(
S1 \ V1

)
⊆ V2, g

(
S1 \ V2

)
⊆ V1
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를 만족하는 서로 겹치지 않는 원의 열린 부분집합 U1, U2, V1, V2가 존재한다면, f와 g의 순서쌍 (f, g)

를 (U1, U2, V1, V2에 결부된) Schottky 순서쌍이라고 부른다.

위 두 예시에서 대조되는 동역학은 일반적인 Homeo(S1)의 부분군에서도 관찰된다는 것이 바로 정

리 1.1의 주제다. 이제 정리 1.1을 몇 단계에 걸쳐 증명하겠다. 먼저 정리 1.1의 두 결론이 양립할 수

없음을 관찰하자.

보조정리 2.8. Homeo(S1)의부분군 G가원위의어떤확률측도를보존한다고하자.그러면 G안에는

Schottky 순서쌍이 존재할 수 없다. 특히, G는 정리 1.1의 (2)의 경우에 해당할 수 없다.

Proof. G가 Homeo(S1)의 부분군이라고 하자. 만약 G가 정리 1.1의 (2)의 경우에 해당한다면 G는

Schottky 순서쌍을 가진다는 것을 보이자. 이를 위해 어떤 덮음 사상 c, 준켤레바꾸기 π, 군 맞춤 사상

ρ 및 열린 구간 Ii, Ji에 결부된 ρ(G) 안의 Schottky 순서쌍 (f, g)을 통해 G가 정리 1.1의 (2)의 결론을

만족한다고 가정하고, ρ(f) = f , ρ(g) = g인 두 원소 f, g ∈ G를 잡자. 그러면

f
(
S1 \ (π ◦ c)−1(I1)

)
= (π ◦ c)−1

(
f(S1 \ I1)

)
⊆ (π ◦ c)−1(I2)

가 성립한다. 비슷한 이유로

f
(
S1\(π◦c)−1(I2)

)
⊆ (π◦c)−1(I1), g

(
S1\(π◦c)−1(I1)

)
⊆ (π◦c)−1(I2), g

(
S1\(π◦c)−1(I2)

)
⊆ (π◦c)−1(I1)

를 관찰할 수 있다. 또 I1, I2, J1, J2가 서로 겹치지 않는 열린 구간이니 (연속사상인) π ◦ c로 이들의
역상을 취하면 서로 겹치지 않는 열린 집합이 된다. 이로써 (f, g)가 G 안의 Schottky 순서쌍임을 알 수

있다.

이제, 서로 겹치지 않는 열린 집합 U1, U2, V1, V2에 결부된 Schottky 순서쌍 (f, g)가 주어졌을 때, f

와 g가 동시에 보존하는 확률 측도가 없다는 것만 보이면 된다. 이를 위해, f 및 g가 어떤 유한 측도

µ를 동시에 보존한다고 가정하자. 이때,
{
f i
(
S1 \ (U1 ∪ U2)

)
: i ∈ Z}는 서로 겹치지 않는 집합들의

모임임을 관찰할 수 있다. 이는

U2 ⊇ f
(
S1 \ U1

)
⊇ f(U2) ⊇ f2

(
S1 \ U1

)
⊇ . . . f i(U2) ⊇ f i+1

(
S1 \ U1

)
⊇ f i+1(U2) ⊇ . . .

라는포함관계로부터따라나온다. f가 µ를보존하므로 i
(
S1\(U1∪U2)

)
에모두같은 µ값을부여하는데,

이 집합들이 서로 겹치지 않으므로

µ
(⋃
i∈Z

f i
(
S1 \ (U1 ∪ U2)

))
=
∑
i∈Z

µ
(
f i
(
S1 \ (U1 ∪ U2)

))
=∞ · µ

(
S1 \ (U1 ∪ U2)

)
가 성립한다. µ가 유한 측도이므로, S1 \ (U1 ∪ U2)의 µ값이 0일 수밖에 없다.

마찬가지 이유로, g와 집합 S1 \ (V1 ∪ V2) 사이 관계를 생각하면 µ(S1 \ (V1 ∪ V2) = 0을 관찰할 수

있다. 이제 S1 = (S1 \ (U1 ∪U2))∪ (S1 \ (V1 ∪ V2))임을 이용하면 µ(S1) 또한 0임을 알 수 있다. 즉, f

와 g 둘 다에 의해 보존되는 유한 측도는 영측도밖에 없고, 확률 측도는 보존될 수 없다. 이로써 증명이

끝난다. �

이제 정리 1.1의 이분법적인 상황을 기술하기 위한 개념을 하나 정의하겠다.

정의 2.9. Homeo(S1)의 부분군 G가 주어졌을 때, 만약 원의 각 점 x ∈ S1마다 그를 포함하는 열린 구

간 Ix ( S1이 존재해 {diam(gIx) : g ∈ G}의 최대 하한이 0이 된다면, G의 작용이 팽창적(expansive)

이라고 부른다. 만약 임의의 닫힌 구간 I ( S1에 대해 infg∈G diam(gI) = 0가 성립한다면, G의 작용이

강하게 팽창적(strongly expansive)이라고 부른다.
7



이것과 연관된 개념으로 근접성(proximality)가 있다. Homeo(S1)의 어떤 부분군 G의 작용이 근접

적(proximal)이라는 것은, 임의의 x, y ∈ S1에 대해 infg∈G d(gx, gy) = 0이라는 뜻이다. G의 작용이

강하게 팽창적이라면 반드시 근접적이어야 함은 쉽게 관찰할 수 있다. G의 작용이 최소한이라는 가정

하에, 그 역 또한 성립함을 곧 관찰할 것이다.

보조정리 2.10. 원 위의 최소한인 작용은 팽창적이거나 혹은 균일연속하다.

Proof. Homeo(S1)의 부분군 G를 하나 생각하고, G의 작용이 최소한이지만 균일연속하지 않다고 가

정하자. 두번째 조건은 다시말해 어떤 ε > 0 및 xn, yn ∈ S1, gn ∈ G가 존재해 limn→0 d(xn, yn) = 0

및 d(gnxn, gnyn) > ε이 성립한다는 뜻이다. 여기서 xn과 yn을 양 끝점으로 가지는 원 위의 구간은 두

개가 있는데, 그중 크기가 더 작은 것을 In이라고 부르자. 이는 limn→0 diam(In) = 0임을 보장한다.

gnIn의 중점을 cn이라고 부르겠다.

원은 컴팩트하므로, (xn)n>0, (yn)n>0 및 (gn)n>0을 어떤 부분나열로 대신함으로써 (gnxn)n>0,

(gnyn)n>0 및 (gncn)n>0가 각각 원 위의 어떤 점 a, b 및 c로 수렴한다는 것을 보장할 수 있다. 이

때 d(a, b) = limn d(gnxn, gnyn) > ε임을 관찰할 수 있다.

이제 c를 중점으로 하는 길이 1
10d(a, b)짜리 구간 I를 생각하자. 그러면 충분히 큰 n에 대해 다음이

성립한다.

(1) d(c, gncn) < 1
100d(a, b) ≤ diam(I)/2이므로 gncn은 I에 포함된다.

(2) d(gnxn, c) > d(a, c)− d(a, gnxn) > 0.4d(a, b)이므로 gnxn은 I 바깥에 있다. 마찬가지로, gnyn

은 I 바깥에 있다.

즉, I는 S1 \ {gnxn, gnyn}를 이루는 두 열린 구간 중 gncn을 포함하는 구간인 gnIn에 포함되어 있다.

이는 곧

g−1n I ⊆ g−1n (gnIn) = In, lim
n→0

diam(g−1n I) = 0

이라는 사실로 이어진다.

이제임의의점 x ∈ S1을생각하자. G의작용이최소한이라고가정했으므로 d(gx, c) < 1
10d(a, b),즉

gx ∈ I이게끔하는 g ∈ G가존재한다.이경우 g−1I는 x의근방인열린구간이면서 limn→0 diam(g−1n g·
(g−1I)) = 0을 만족한다. 각각의 x ∈ S1에 대해 이러한 열린 구간을 잡아줄 수 있으므로, G의 작용은

팽창적이라고 할 수 있다. �

이제 S1 안의 구간을 생각할 때 방향이 중요해지므로 다음을 상기하도록 하자. 먼저, 사영 Π : R→
S1을 고정했다는 사실을 기억하자. S1 위의 구간이란 원 전체가 아닌 연결된 부분집합을 뜻한다. 원

위의닫힌구간을만들기위해서는,차이가 1보다작은두실수 a < b를고정한뒤, (a, b)를사영하면된

다. 이때, Π(a)를 Π([a, b])의 왼쪽 끝점, Π(b)를 Π([a, b])의 오른쪽 끝점이라고 부른다. 그리고 Π([a, b])

를 편의상 [Π(a),Π(b)]로 나타내겠다. 물론 원 위의 특정 닫힌 구간 I를 사영으로 가지는 R 위의 닫힌
구간 [a, b]는 수없이 많지만, 그 [a, b]의 선택지와 무관하게 I의 왼쪽 끝점 및 오른쪽 끝점은 일관성 있

게 정의된다. 마찬가지로 열린 구간 및 반열림 구간의 왼쪽/오른쪽 끝점들을 정의한다. 그러면 다음을

관찰할 수 있다:

사실 2.11. Homeo(S1)의 원소 g에 대해 다음 조건들은 동치이다:

(1) g는 방향 보존 위상동형사상이다.

(2) 원 위의 임의의 구간 I에 대해 gI의 왼쪽 끝점은 g · (I의 왼쪽 끝점)이다.

(3) 원 위에 (점이 아닌) 어떤 구간 I가 존재해, gI의 왼쪽 끝점은 g · (I의 왼쪽 끝점)이다.
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Homeo(S1)의 임의의 부분군 G를 다룰 때 방향 보존 위상동형사상들로 이루어진 그 부분군 G ∩
Homeo+(S1)에 먼저 집중하면 편할 때가 있다. 이 과정에서 동역학적인 특성을 그다지 잃지 않는다는

것을 다음 보조정리를 통해 알 수 있다.

보조정리 2.12. Homeo(S1)의 한 부분군 G이 주어졌을 때, G가 명제 2.3의 특정 결론에 해당할 필

요충분조건은 G ∩ Homeo+(S1)가 그 결론에 해당하는 것이다. 다시 말해, 유한한 G-궤도가 존재할

필요충분조건은 유한한 G∩Homeo+(S1)-궤도가 존재한다는 것이고, 모든 G-궤도가 원 안에서 조밀할

필요충분조건은 모든 G∩Homeo+(S1)-궤도가 원 안에서 조밀하다는 것이며, G-불변인 공집합이 아닌

닫힌 부분집합 중 최소한인 Cantor 집합이 존재할 필요충분조건은 G∩Homeo+(S1)-불변인 공집합이

아닌 닫힌 부분집합 중 최소한인 Cantor 집합이 존재한다는 것이다.

Proof. 편의상 G+ := G∩Homeo+(S1)로 표기하겠다. 또 편의상, 비어 있지 않은 G-불변인 닫힌 집합

중 포함 관계상 최소한인 집합을 G-최소한이라고 부르겠다.

G = G+인경우에는명제가당연하므로 G\Homeo+(S1)가어떤원소 r을가지고있을때만다루면

된다. 이때 G+는 G의 지수 2짜리 정규 부분군이 되며, G는 G+ ∪ rG+ = G+ ∪G+r의 형태가 된다.

먼저유한한 G+-궤도가존재한다고가정해보자.다시말해, G+ ·y가유한집합이되게끔하는 y ∈ S1

이존재한다는뜻이다.이경우, G ·y = G+y∪rG+y 또한유한집합이되어, G또한명제 2.3의결론 (1)

을 만족한다. 역으로, 어떤 점의 G-궤도가 유한하면 G+-궤도는 그것보다 클 수 없으니 역시 유한하다.

이제 G+-최소한인 Cantor 집합 K가 존재한다고 하자. 명제 2.3에 의하면 G+는 결론 (1)에 해당할

수 없으므로, 그 어느 유한 집합도 보존할 수 없다. 그러니 G 또한 그 어느 유한집합도 보존할 수 없다.

(∗) 한편, K 및 rK는 내부(interior)가 공집합인 Cantor 집합들이므로 그 합집합 또한 내부가 비어

있다. 다시 말해, K ∪ rK는 원 전체가 아닌 컴팩트 집합이다. 또 G+의 각 원소는 K는 물론, rK 또한

보존한다. 이는 임의의 g ∈ G+에 대해 r−1gr 또한 G+의 원소이므로

g(rK) = r · (r−1gr) ·K = rK

이기 때문이다. 한편, r은 K를 rK로 보내고 rK를 r2K = K로 보내기에, K ∪ rK를 보존한다. 이를

고려했을 때, G-최소한인 부분집합 K ′를 하나 잡으면 K ′는 결코 원 전체일 수 없고, (∗) 때문에 유한집
합일 수도 없다. 따라서 K ′는 무한집합이면서 원 전체가 아닌 집합이다. 즉, G는 명제 2.3의 결론 (3)

을 만족한다.

역으로, 만약 G-최소한인 Cantor 집합 K가 존재하면, G+ 또한 이를 보존하기에 G+는 명제 2.3

의 결론 (2)를 만족할 수 없다. 다시 말해, G+는 유한한 궤도를 가지거나 혹은 명제 2.3의 결론 (3)을

만족해야 한다. 하지만 G+가 유한한 궤도를 가지면 G 또한 그러하다는 것을 관찰했으니, G가 명제

2.3의 결론 (3)을 만족한다는 가정에 모순이다. 따라서 G+는 명제 2.3의 결론 (3)을 만족해야 한다.

이로써 [(G+가 명제 2.3의 결론 (3)을 만족)⇔ (G가 명제 2.3의 결론 (3)을 만족)]이 증명되었다. �

다음으로, 균일연속한 작용에 대해 다음 사실이 성립한다.

보조정리 2.13. Homeo(S1)의 어떤 부분군 G의 작용이 최소한이면서 균일연속하다고 하자. 그러면

G는 켤레바꾸기를 통해 원 위의 Lebesgue 측도를 보존하는 군으로 나타낼 수 있다. 즉, 켤레바꾸기를

통해, G를 원의 회전(rotation) 및 지름에 대한 반전들(reflection)로 이루어진 군으로 변환할 수 있다.

Proof. 증명을 위해, 최소한이고 균일연속한 작용을 보이는 원의 자기위상동형사상 군 G를 고정하겠

다. 편의상 G ∩ Homeo+(S1)를 G+로 나타내겠다. 그러면 자연히 G+의 작용도 균일연속하다. 또한
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보조정리 2.12에 의해 G+의 작용은 최소한이기도 하다. 다시 말해,

(2.1) 임의의 x, y ∈ S1에 대해, lim
n→∞

gnx = y이게끔 하는 G+의 원소 나열 (gn)n>0이 존재한다.

G의 작용이 균일연속이므로, 각 ε > 0마다 0 < δ = δ(ε) < ε이 존재하여, 임의의 g ∈ G 및

diam(I) < δ인 임의의 구간 I에 대해 diam(gI) < ε이 성립한다. 이제 다음을 살펴보자.

주장 2.14. 원 위의 임의의 두 점 x, y ∈ S1, 임의의 양수 ε > 0 및 임의의 방향 보존 위상동형사상

g ∈ G+에 대해,

d(x, gx) < δ(ε)⇒ d(y, gy) < 2ε,

이 성립한다.

주장 2.14의 증명 x와 gx를 두 끝점으로 가지는 닫힌 구간 중 크기가 δ 이하인 것을 I라고 하자. 이때

I = [x, gx], 즉 x가 I의 왼쪽 끝점인 경우만 다루면 충분하다. 그렇지 않은 경우 I ′ = [gx, gy] 및

g−1 ∈ G ∩Homeo+(S1)에 대해 살펴보면 되기 때문이다.

이제 다음을 관찰하자.

(1) 각 i ≥ 0에 대해, diam(I) < δ이고 gi ∈ G+이므로 diam(giI) < ε이다.

(2) 각 i > 0에 대해 gi−1I의 오른쪽 끝점과 giI의 왼쪽 끝점은 gix로 동일하다.

이제 A := {i ≥ 0 : giI ⊆ [x, y]}로 두면 다음 두 가능성이 생긴다.

(1) A = Z≥0: 이 경우, x, g1x, g2x, . . .는 [x, y] 위에 순서대로 왼쪽에서 오른쪽으로 놓여 있다.

이들의 극한점 c를 잡으면 x, gx, g2x, . . .는 왼쪽으로부터 c로 점점 다가오며, d(gix, c) ↘ 0가

성립한다. 따라서 d(gix, gi+1x)의 극한도 0이다. 이 말은 곧, 제아무리 작은 η > 0에 대해서도

d(gix, gi+1x) < η, d(g−i · gix, g−i · gi+1x) = d(x, gx)를 만족하는 i가 존재한다는 뜻인데, 이는

{gj : j ∈ Z} ⊆ G의 균일연속성에 위배된다.

(2) A에 속하지 않는 양의 정수가 존재하는 경우: 그러한 양의 정수 중 가장 작은 것을 N이라고

두면, y는 [gNx, gN+1x]에 속하게 된다. 이는 곧 gy ∈ [gN+1x, gN+2x]를 의미하기도 한다. 이

두 구간은 gN+1x라는 공통점을 가지는 한편 둘 다 ε보다 크기가 작으므로,

d(y, gy) < diam
(
[gNx, gN+1x]

)
+ diam

(
[gN+1x, gN+2x]

)
< 2ε

라는 결론을 얻는다. �

거의 같은 증명을 통해 다음 결과도 관찰할 수 있다.

주장 2.15. 원 위의 임의의 구간 J ⊆ S1 및 G의 임의의 원소 g ∈ G에 대해,

gJ ⊆ J ⇒ gJ = J

가 성립한다.

주장 2.15의 증명.. 먼저, g가 방향 보존성일 때만 증명하면 된다는 것을 관찰하자. 실제로, 일반적인

g ∈ G에대해 gJ ⊆ J가성립하면 g2J ⊆ gJ ⊆ J 또한성립한다.이제방향보존성인 g2에대해명제를

적용하면 g2J = J를이끌어낼수있고,이는곧 g2J = gJ = J임을의미한다.또, J가닫힌구간일때만

증명해도 충분하다.

이제 증명을 위해 g가 방향 보존성이면서 gJ ⊆ J임을 가정하자. 이로부터 gJ와 J의 왼쪽 끝점

및 오른쪽 끝점이 쌍마다 일치한다는 것을 보이기만 하면 된다. 귀류법을 적용하기 위해, gJ의 왼쪽

끝점이 J의왼쪽끝점과일치하지않는다고가정해보자. J = [x, y]로표기하면,이는 d(x, gx) > 0임을
10



의미한다. 또한 I := [x, gx]는 J에 포함되어 있다. 이제, 각 i > 0에 대해 giI ⊆ giJ ⊆ gi−1J ⊆ . . . ⊆ J
가 성립하고, gi−1I의 오른쪽 끝점과 giI의 왼쪽 끝점은 gix로 동일하다. 그말인즉, x, gx, g2x, . . .는 J

위에 순서대로 왼쪽에서 오른쪽으로 놓여 있다. 이들의 극한점 c를 잡으면 x, gx, g2x, . . .는 왼쪽으로

부터 c로 점점 다가오며, d(gix, c)↘ 0가 성립한다. 따라서 d(gix, gi+1x)의 극한도 0이다. 이 말은 곧,

제아무리 작은 η > 0에 대해서도 d(gix, gi+1x) < η, d(g−i · gix, g−i · gi+1x) = d(x, gx)를 만족하는 i

가 존재한다는 뜻인데, 이는 {gj : j ∈ Z} ⊆ G의 균일연속성에 위배된다. 따라서 gJ의 왼쪽 끝점과 J

의 오른쪽 끝점은 일치해야 한다.

이제 gJ의 오른쪽 끝점이 J의 오른쪽 끝점과 일치하지 않는다고 가정해 보자. 그말은 J ′ := S1 \
(g int J)라는 구간의 왼쪽 끝점과 g−1J ′ = S1 \ int J의 왼쪽 끝점이 일치하지 않는다는 말이다. 더하여

g−1J ′ ⊆ J ′가성립한다.상술한논증을적용하면마찬가지로모순을얻는다.이로써증명이끝난다. �

주장 2.14는 다음과 같은 결과를 낳는다.

주장 2.16. 임의의 두 점 x, y ∈ S1 및 G+ 안의 임의의 원소 나열 (gn)n>0에 대해

(gnx)n>0가 수렴함 ⇔ (gny)n>0가 수렴함

이 성립한다.

또한, G가 균일연속하므로, 어떤 점 x ∈ S1으로 수렴하는 점의 나열 x1, x2, . . . ∈ S1 및 G 안의

임의의 원소 나열 (gn)n<0에 대해

(gnx)n>0가 수렴함 ⇔ (gnxn)n>0가 수렴함

이 성립한다. 또 두 나열이 수렴할 경우 그 수렴값 또한 일치한다. 이를 종합하면 다음과 같다.

주장 2.17. 원 안에서 수렴하는 임의의 점의 나열 (xn)n>0, 임의의 점 y ∈ S1 및 G+ 안의 임의의 원소

나열 (gn)n>0에 대해

(gnxn)n>0가 수렴함 ⇔ (gny)n>0가 수렴함

이 성립한다.

이제 본격적으로 G+가 보존하는 측도를 건설하겠다. 이를 위해 x0 ∈ S1을 고정하자.

주장 2.18. 각 N ∈ Z>1마다, 다음을 만족하는 점 x1;N , x2;N , . . . , xN−1;N ⊆ S1이 각각 유일하게

존재한다. 편의상

xkN+l;N := xl;N , xkN ;N := x0 (k ∈ Z, l ∈ {1, . . . , N − 1})

로 표기하겠다.

(1) 구간 (x0 =: x0;N , x1;N ), (x1;N , x2;N ), . . . , (xN−1;N , xN ;N := x0)들은 서로 겹치지 않는다.

(2) limn gnx0 = x1;N이게끔 하는 임의의 G+의 원소 나열 (gn)n>0에 대해 (참고: 문장 2.1),

limn g
k
nxi;N = xi+k;N가 각 i, k ∈ Z마다 성립한다.

주장 2.18의 증명.. 문장 2.1에 의해, 임의의 y ∈ S1가 주어졌을 때 limn gnx0 = y이게끔 하는 G+의

원소 나열 (gn)n>0이 존재한다. 이때 각 k > 0에 대하여 xk(y) := limn g
k
nx0로 정의하면, 주장 2.17 덕

분에 xk(y)의 정의에서 나타나는 극한은 잘 정의되며, 그 값은 원소 나열 (gn)n>0의 선택지에 의존하지
11



않는다. 또 주장 2.17 덕분에 x1(y), x2(y), . . . 각각은 y에 대해 연속이다. 이제,

A :=
{
y ∈ S1 \ {x0} :

(
x0 := x0(y), y := x1(y)

)
,
(
x1(y), x2(y)

)
, . . . ,

(
xN−1(y), xN (y)

)
이 서로 겹치지 않음

}
=

{
y ∈ S1 \ {x0} :

N∑
k=1

(
(xk−1(y), xk(y))의 길이

)
≤ 1

}
라는 집합을 정의하겠다. (여기서 xk(y)들이 잘 정의된다는 것은 주장 2.17이 보장한다.) 먼저 A의
영역이 어느 정도 제한되어 있다는 점을 관찰하겠다. 이를 위해, δ = δ(1/10)를 잡은 뒤, [x0, y]의 길

이가 1 − 0.5δ를 넘도록 하는 y ∈ S1을 생각해보자. 그런 y에 대해 gnx0 → y인 원소 나열 (gn)n>0을

가져오면 충분히 큰 n에 대해 d(x0, gnx0) > 2 · ε가 성립하고, 주장 2.14에 의해 d(gnx0, g
2
nx0)는 δ보다

커진다. 이에 따라 (x0, x1) 및 (x1, x2)의 길이 합은 1보다 크고 두 구간은 겹칠 수밖에 없다. 따라서

이러한 y는 A에 속할 수 없다. 다시 말해, A가 길이 1− 0.5δ 이하인 구간에 포함되어 있다.

이제 A의 최소 상한을 생각하자. 더 엄밀하게는,

I :=
⋂
y∈A

[x0, y] ⊆ S1

는 원 위의 구간이기에 어떤 s ∈ S1에 대하여 [x0, s] 또는 [x0, s)의 형태인데, 이 s를 A의 상한이라고
부르겠다. 그러면 함수 x1(y), x2(y), . . .의 연속성에 의해,

∑N
k=1

(
(xk−1(s), xk(s))의 길이

)
= 1임을 알

수있다.이는곧 xN (y) = x0임을의미하고,이로부터귀납적으로 xkN+l = xl임이따라나온다.더하여,

주장 2.17을 다시 한번 적용하면 limn g
k
nxi = xi+k를 관찰할 수 있다.

이제 남은 것은 점 x1;N , x2;N , . . . xN−1;N의 유일성이다. 참고로, 명제의 조건으로부터 x1;N의 유일

성만 증명해 내면, (2)의 조건 limn g
k
nx1;N = x1+k;N로부터 나머지 점들의 유일성은 따라나온다. (이는

또다시 주장 2.17 덕분이다) 따라서,

(2.2)
N∑
k=1

(
(xk−1(y), xk(y))의 길이

)
= 1

이게끔 하는 y의 유일성만 보이면 된다.

이를귀류법으로보이기위해,등식 2.2가성립하게끔하는서로다른두입력값 y1, y2 ∈ S1\x0가있
다고가정하자.일반성을잃지않고 y1이 y2보다더왼쪽에있다고가정하자.즉, ε1 := ([x0, y2]의 길이)−
([x0, y1]의 길이) > 0이라고 가정하는 것이다. 귀납적으로,

εi+1 := δ(εi/4)

를 정의하자. 이로부터 xN (y2)가 xN (y1)보다 εN 이상 오른쪽에 있다는 것을 보여, xN (y2) = xN (y1)

에 모순임을 이끌어내는 것이 우리의 목표다.

이를위해,귀납적으로 xk(y2)가 xk(y1)보다 εk 이상오른쪽에있다고해보자.이와함께 limn gnx0 =

y1, limn hnx0 = y2인 원소 나열 (gn)n>0, (hn)n>0을 준비하자. 그러면 충분히 큰 n에 대해, hkng
−k
n ·

gknx0 = hknx0는 gknx0보다 εk/2 이상 오른쪽에 있다. 그러면 주장 2.14에 의해 hkng
−k
n · gk+1

n x0는 gk+1
n x0

로부터 최소 δ(εk/2) 이상 떨어져 있어야 한다. 또, 만약 hkng
−k
n · gk+1

n x0가 gk+1
n x0보다 오른쪽에 있지

않다면,

hng
−k
n · [gknx0, gk+1

n x0] ( [gknx0, g
k+1
n x0]

가 성립해 주장 2.15에 모순이다. 이를 종합하면, hkngnx0는 gk+1
n x0보다 최소 εk+1 이상 오른쪽에 있

음을 알 수 있다. 또, (충분히 큰 n에 대해) x0, hnx0), (hnx0, h
2
nx0), . . . , (h

k
nx0, h

k+1
n x0)은 순서대로

왼쪽부터 오른쪽으로 줄지어 놓인 구간들이고 gnx0이 (x0, hnx0) 사이에 있으므로, hk+1
n x0은 hkngnx0
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보다도 더욱 오른쪽에 있다. 즉 충분히 큰 n에 대해 항상hk+1
n x0은 gk+1

n x0보다 εk+1 이상 오른쪽에

있으므로, xk+1(y1) 및 xk+1(y2)의 위치 관계에 대한 주장이 따라나온다. 이로써 증명이 끝난다. �

이제, 각각의 N ∈ {2k : k ∈ Z>1}마다, xk;N을 xk/N이라고 표기하겠다. 이 표기가 일관성 있기

위해서는 xk;N = x2k;2N라는 등식이 항상 성립해야 하는데, 이는 주장 2.18의 결론의 조건 (2) 및 xi;j

들의 유일성으로부터 따라나온다.

이로부터 유한 2진 소수들 S := {Π(i/2k) : k > 0, i = 1, . . . , 2k} ⊆ S1로부터 S1로의 사상 ρ : a 7→
xa가 잘 정의된다. 주장 2.18의 결론의 조건 (1)로부터 이 사상이 단조적임을 알 수 있다. 또 이 사상은

S ⊆ S1에 제한해서 보았을 때도 균일연속하다. 실제로, 임의의 ε > 0이 주어졌을 때 δ = δ(ε)을 잡을

수 있다. 이때 만약 어떤 k > 0 및 i ∈ {1, . . . , 2k}에 대해 d(x(i−1)/2k , xi/2k) > 2ε이 성립한다면, 주장

2.14에 의해 다른 모든 j ∈ {1, . . . , 2k}에 대해서도 d(x(j−1)/2k , xj/2k) > δ임을 알 수 있다. 이는 곧

2k · δ <
2k∑
j=1

(
(x(j−1)/2k , xj/2k)의 길이

)
≤ 1

라는 결론으로 이어져, k의 상한을 하나 제시한다. 다시 말해, 이 상한보다 더 큰 k에 대해서는 각 i에

대해 [x(i−1)/2k , xi/2k ]의 길이가 ε 이하이다.

이처럼 ρ가 원 위에서 조밀한 집합인 S로부터 S1로 향하는 단조적인 균일연속 사상이기에, ρ는 S1

에서 S1로 향하는 단조적인 연속사상으로 확장된다. 또한, ρ의 차수를 계산하는 한 방법으로 [0, 1]을

따라 Π−1 ◦ ρ ◦Π의 변화량을 적분하는 것이 있는데, S 안의 점점 조밀해지는 샘플 입력값들을 이용해
계산했을 때 항상 그 값이 1이도록 정의했기에 (이는 주장 2.18의 결론 (1), 즉 등식 2.2에 다름 아니다)

ρ의 차수 또한 1이다. 즉, ρ는 S1 위의 위상동형사상이다.

이제 S1 상의 Lebesgue 측도 µ의 당겨옴(pullback) ρ∗µ를 정의할 수 있다. 즉, Borel 집합 A ⊆ S1에

대해 (ρ∗µ)(A) := µ(ρ−1(A))로 정의하는 것이다. 이 측도가 G+의 작용에 불변한다는 것을 증명하기

위해서는 각각의 s ∈ [0, 1]에 대해 I = [x0, xs]의 측도가 G+의 작용에 의해 변하지 않음을 관찰하기만

하면 된다. 이를 위해 g ∈ G+을 하나 생각하자. 그러면 각 k > 0마다

gx0 ∈ [x(i(k)−1)/2k , xi(k)/2k ], gxs ∈ [x(j(k)−1)/2k , xj(k)/2k ]

를 만족하는 i(k), j(k)가 있다. 이때 (ρ∗µ)(A) = limk 2−k[j(k)− i(k)] = s로 정의된다.

이제, 주장 2.18에 의해 다음을 보장할 수 있다. 어떤 G의 원소 hk가 d(hx0, x1/2k)를 충분히 작게

한다면, h
−i(k)
k x0는 x(i(k)−1)/2k를 x(2k−1)/2k 근처로, xi(k)/2k를 x0 근처로 보낸다. 이는 특히

h
−i(k)
k gx0 ∈ h−i(k)k [x(i(k)−1)/2k , xi(k)/2k ] ⊆ [x(2k−2)/2k , x1/2k ]

가 성립함을 의미한다. 마찬가지로, d(hx0, x1/2k)가 충분히 작기만 하다면,

h
−i(k)
k gxs ∈ h−i(k)[x(j(k)−1)/2k , xj(k)/2k ] ⊆ [x(j(k)−i(k)−2)/2k , x(j(k)−i(k)+1)/2k ]

가 성립한다. 이제 k를 무한대로 보낼 때, h
−i(k)
k g는 x0를 점점 x0 가까이 보낸다. 그러면 주장 2.16에

의해 h
−i(k)
k gxs 또한 xs에 가까워진다. 따라서 2−k(j(k)− i(k))가 s로 수렴하고, [x0, xs]의 g[x0, xs]의

ρ∗µ값은 s로 일치하게 된다. 즉 임의의 g ∈ G+가 x0를 왼쪽 끝점으로 가지는 임의의 구간의 ρ∗µ값을

보존하고, 이는 G+가 ρ∗µ값을 보존함을 의미한다.

만약 G+ = G라면 이대로 증명이 끝난다. 그렇지 않은 경우, 각각의 r ∈ G \ G+가 측도 ρ∗µ를

보존함을 증명해야 한다. 즉, 임의의 닫힌 구간 I에 대해 rρ−1(I)와 ρ−1(I)의 길이가 같음을 확인해야

한다. 귀류법을 적용하기 위해 어떤 r ∈ G\G+, 어떤 0 < ε < 0.1 및 어떤 닫힌 구간 I에 대해, rρ−1(I)
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가 ρ−1(I)보다 ε이상길다고가정해보자.그러면 ρ−1(I)의왼쪽끝점을 rρ−1(I)의왼쪽끝점으로부터

오른쪽으로 ε/4 이상 ε/2 이하 떨어져 있도록 보내는 g ∈ G+가 존재한다. 이는 G+의 작용이 최소한

이기 때문이다. 이때 gρ−1(I)의 길이는 ρ−1(I)와 같으므로, gρ−1(I)는 rρ−1(I)에 포함되면서 그 왼쪽

끝점이 차이나게 된다. 다시 말해, gI ( rI이다. 이는 rg−1 ∈ G라는 사실 및 주장 2.15에 모순이다.

따라서 이러한 일은 생길 수 없고, 각 r ∈ G \G+ 역시 측도 ρ∗µ를 보존한다. �

이제 원 위에서 최소한이지만 균일연속하지 않은 작용들, 즉 팽창적인 작용들을 살펴보겠다.

보조정리 2.19. Homeo(S1)의 어느 부분군 G의 작용이 최소한이면서 팽창적이라고 하자. 그러면 강

하게 팽창적인 작용을 가지는 부분군 ρ(G) ≤ Homeo(S1)로 향하는 군 맞춤 사상 ρ : G → ρ(G) ≤
Homeo(S1) 및 원의 자가 덮음 사상 π : S1 → S1이 존재하여 각 g ∈ G마다

π ◦ g = ρ(g) ◦ π

가 성립한다.

Proof. 이번에도 G+ := G ∩ Homeo(S1)로 두면, G = G+이거나 혹은 G+가 G의 지수 2짜리 정규

부분군이다. 그 어느 경우이든, G의 작용이 최소한이므로 G+의 작용 또한 최소한임을 기억하자. G가

이미 강하게 팽창적인 경우 π 및 ρ를 항등사상들로 두는 것으로 증명이 끝난다. 이제 G가 팽창적이되

강하게 팽창적이지는 않다고 가정해 보자. 그렇다면 G+ 또한 팽창적이되 강하게 팽창적이지는 않다.

편의상, 어떤 구간 I ⊆ S1가 infg∈G+ diam(gI) = 0을 만족할 때 I가 축약 가능하다(contractible)고

부르겠다. 그러면 다음을 쉽게 관찰할 수 있다.

사실 2.20. 임의의 구간 I, J ⊆ S1 및 g ∈ G+에 대해,

I가 축약 가능하고 gJ ⊆ I임 ⇒ J가 축약 가능함

이 성립한다.

G+에 대한 가정으로부터, 축약 가능한 열린 구간 I 및 축약 불가능한 원 전체가 아닌 열린 구간 J가

적어도 하나씩 존재함을 알 수 있다. G+의 작용이 최소한이므로, {g−1I : g+ ∈ G} 및 {g−1(S1 \ J̄) :

g+ ∈ G}는 각각 S1의 열린 집합 덮개가 된다. Lebesgue 덮음 보조정리에 의해 적당한 εG > 0에 대해

다음이 보장된다: 임의의 구간 A ⊆ S1에 대해

(2.3)
diam(A) < εG ⇒ A ⊆ g−1I를 만족하는 g+ ∈ G가 존재함⇒ A는 축약 가능,

diam(A) > 1− εG ⇒ A ⊇ g−1J를 만족하는 g+ ∈ G가 존재함 ⇒ A는 축약할 수 없음

가 성립한다.

특히,

Ax := {y ∈ S1 \ {x} : [x, y]가 축약 가능함}

은길이 εG짜리구간을포함하면서길이 1− εG짜리구간에포함된다.또한,사실 2.20로부터다음을알

수 있는데, 만약 y ∈ Ax이고 z ∈ [x, y]라면 z ∈ Ax라는 점이다. 이를 종합하면, Ax라는 집합은 어떤
y 6= x에 대해 (x, y) 혹은 (x, y]라는 형태를 가진다. 이때 이 점 y를 φ(x)라고 정의하겠다.

주장 2.21. 사상 φ : S1 → S1와 G+의 원 위의 작용은 호환 가능하다. 그말인즉, 임의의 x ∈ S1 및

임의의 g ∈ G+에 대해 φ(gx) = gφ(x)가 성립한다.
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Proof. x ∈ S1 및 g ∈ G+를임의로생각했을때,각각의 y ∈ Ax마다 [x, y]는축약가능하고,따라서사

실 2.20에 의해 [gx, gy] = g[x, y] 또한 축약 가능하다. 이로부터 Agx ⊆ gAx임이 따라나온다. 마찬가지

이유로 Ax ⊆ g−1Agx가 성립하고, g가 일대일대응이므로 gAx ⊆ Agx 또한 성립한다. 즉 Agx = gAx
이므로 증명이 끝난다. �

이제다음과같은 φ의 ‘단조성’을 쉽게 관찰할 수있다. 사실원에서자기자신으로 가는 사상의 단조

성을 얘기하기 위해서는 실수 집합으로 끌어올려야 하기에, 그 사상의 연속성을 논하는 것이 먼저여야

한다. 하지만 우리 증명에서는 ‘단조성’이 연속성보다 먼저 필요하다.

주장 2.22. 그 어떤 x, y ∈ S1에 대해서도,
[
y, φ(y)

]
가
[
x, φ(x)

)
에 포함되는 일은 일어나지 않는다.

Proof. 귀류법을 적용하기 위해,
[
y, φ(y)

]
⊆
[
x, φ(x)

)
를 가정해 보자. 이는 φ(x) /∈

[
y, φ(y)

]
를 의

미한다. 한편,
(
x, φ(x)

)
에 포함되어 있는

(
y, φ(x)

)
의 각 점 z에 대해 [y, z] ⊆ [x, z]는 축약 가능하다.

그렇다면 φ(y)의정의상
[
y, φ(x)

)
는
[
y, φ(y)

)
에포함되어야한다.이는 φ(x)가

[
y, φ(y)

]
바깥에있다는

관찰과 모순이기에 증명이 끝난다. �

이제 φ의 연속성을 보이겠다. 귀류법을 적용하기 위해,

lim
n
xn = a = lim

n
yn, lim

n
φ(xn) = b 6= c = lim

n
φ(yn)

을만족하는세점 a, b, c ∈ S1 및원위의점의나열 (xn)n>0, (yn)n>0을생각하자.일반성을잃지않고,

c ∈ (a, b)라고 가정하자.

G+의작용이최소한이기에 b를 (c, b)안으로보내는 g ∈ G+가존재한다.이때만약 ga가 [a, gb)안에

있으면 [ga, gb]는 (a, b)에 포함되고, 충분히 큰 n 및 그보다 더욱 충분히 큰 m에 대해
[
gym, gφ(ym)

]
가[

yn, φ(yn)
)
에 포함된다. 이는 주장 2.22에 모순이다. 다음으로, 만약 ga ∈ (gb, a)라면 (ga, gb)는 [a, c]

를 포함하고, 충분히 큰 n에 대해
[
gyn, gφ(yn)

)
가
[
xn, φ(xn)

]
을 포함한다. 이는 마찬가지로 모순이다.

마지막으로, g는 일대일대응이기에 ga 6= gb이다. 따라서 가정한 상황은 생길 수 없고, φ는 연속하다.

이제 점 x0 := Π(0) ∈ S1를 고정하고, φ̃(0) = ([x0, φ(x0)]의 길이)를 만족하는 φ의 R로의 끌어올림
φ̃를 생각하면, φ̃(t) := [t+ εG, t+ 1− εG]가 항상 성립한다. 이는 곧 φ의 차수가 1임을 의미한다.

다음으로 φ가 일대일 사상임을 보이겠다. 귀류법을 적용하기 위해, 어떤 a ∈ S1에 대해 φ−1(a)가 한

개 이상의 점을 가지고 있다고 가정하자. x ∈ φ−1a에 대한 [x, a]의 길이의 최대 하한을 m, 최소 상한을

M이라고 하면 εG ≤ m < M ≤ 1 − εG이 성립한다. [b, a]의 길이가 M , [c, a]의 길이가 m이게끔 하는

두 점 b, c ∈ S1을 잡으면, b와 c는 φ−1(a)의 집적점이기에 φ의 연속성에 의해 둘 다 φ−1(a)에 속한다.

이제 c를 (b, c) 안으로 보내는 어떤 g ∈ G+를 생각하자. 이때 만약 ga ∈ (a, gc)라면 [c, φ(c)] =

[c, a] ⊆ [gc, ga) = [gc, φ(gc))가 성립해 주장 2.22에 모순이다. 만약 ga ∈ (gc, a)라면 [gc, ga] =

[gc, φ(gc)]가 [b, a) = [b, φ(b))에포함되어역시주장 2.22에모순이다.마지막으로, g는일대일대응이기

에 ga 6= gc이다.이를종합하면, c를 (b, c)안으로보내는 g ∈ G+는반드시 a를고정해야한다는것이다.

여기서 (gc, a) 안에 c가 포함되어 있음을 유념하자. 이는 곧 g−1c ∈ g−1(gc, a) = (c, g−1a) = (c, a)

임을 의미한다. 다시 말해, [g−1c, a]는 [c, a]보다 짧은 구간이면서, φ(g−1c) = g−1φ(c) = g−1a = a가

성립한다. 이는 x ∈ φ−1a에 대한 [x, a]의 길이의 최솟값이 c에서 구현된다는 사실에 모순이다.

위 모순에 의해, φ가 일대일 사상이라는 것이 따라나온다. 그러면 φ : S1 → S1는 연속이고 일대일

사상이면서 차수가 1이다. 이는 곧 φ가 방향 보존 위상동형사상임을 의미한다.

이제 x ∈ S1을 임의로 하나 고정한 뒤, Sk(x) :=
∑k

i=1([φ
i−1x, φi(x)]의 길이)가 1 이하이도록 하는

양의 정수 k 중 최댓값을 N이라고 적자. (N은 반드시 유한하고, 특히 반드시 1/εG 이하이다.) 만약
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φNx = x라면 SN (x) = 1이 성립하고, 이 경우 y = x로 둔다. 만약 그렇지 않다면, SN (x) < 1,

SN+1(x) > 1이 성립한다. 그러면 [φN−1x, x]는 [φN−1x, φNx]보다 짧은 부분구간이므로 축약가능

하고, 따라서 G+의 원소 나열 (gn)n>0이 존재해 d(gnφ
Nx, gnx) = d(φNgnx, gnx) → 0이 성립한

다. 필요하다면 (gn)n>0을 적당한 부분나열로 대체함으로써 나열 (gnx)n>0이 어떤 점 y ∈ S1로 수

렴한다는 것을 보장할 수 있다. 한편, SN (x) < 1로부터 (x, φx), . . . , (φN−1x, φNx)가 모두 서로 겹

치지 않음을 알 수 있는데, 각각의 gn은 위상동형사상이므로 구간들의 겹침 여부를 보존한다. 즉,

(gnx, gnφx = φgnx), . . . , (φN−1gnx, φ
Ngnx)는 모두 겹치지 않으므로, SN (gnx) ≤ 1이 각 n마다 성립

한다. 이제 φ의 연속성을 이용하면 SN (y) ≤ 1임을 알 수 있다. 한편, gnx→ y이고 d(φNgnx, gnx)→ 0

이므로, φ의 연속성에 의해 φNy = y이다. 이 사실과 εGN ≤ SN (y) ≤ 1를 결합하면 SN (y) = 1임을

알 수 있다. 즉,

[y, φy], [φy, φ2y], . . . , [φN−1y, φNy = y]

는 그 내부끼리는 서로 겹치지 않으면서 원 전체를 덮는다.

이제 y를 임의의 g ∈ G+로 움직여 보자. 그러면

[gy, φgy], . . . , [φN−1gy, φNgy = gφNy = gy]

의 내부끼리 겹치지 않는다는 사실이 유지되기에, SN (gy) = 1가 성립한다. 이제 임의의 점 z ∈ S1이

주어졌을때 gny → z이게끔하는 G+의원소나열 (gn)n>0을잡으면,모든 SN (gny) = 1이성립하고 (φ

의 연속성의 결과인) SN (·)의 연속성으로부터 SN (z) = 1임을 알 수 있다. 즉, SN (·)는 원 위에서 항상
1이라는 상수값을 가진다. 다시 말해, 임의의 점의 φ-궤도는 점 N개짜리 집합이고, S1의 각 φ-궤도를

한 점씩으로 묶어 내면 차수 N짜리 덮음 사상 π : S1 → S1가 만들어진다. φ와 G+의 작용이 호환

가능하기에, G+는 몫공간인 S1에도 자연스럽게 작용한다.

이제 G전체가몫공간인 S1에자연스럽게작용하기위해서는 G\G+의각원소의작용이덮음사상

π와 호환 가능해야 한다. 이에 다음을 관찰하자.

주장 2.23. 임의의 x ∈ S1 및 임의의 r ∈ G \G+에 대해, rφ(x) = φ−1(rx)가 성립한다.

주장 2.23의 증명 I = [x, φ(x)]라고 두고, rI = [rφ(x), rx]는 다음 세 가지 중 하나를 만족한다.

(1) rI ( [rφ(x), φrφ(x)]: 이 경우, φ의 연속성을 이용하면 rI ⊆ (c, φ(c))인 점 c ∈ S1를 잡아줄

수 있다. 이제 G+의 작용이 최소한이라는 점과 φ의 연속성을 이용하면 rI ⊆ (gx, φgx) =

(gx, gφx)이게끔 하는 g ∈ G+를 찾을 수 있다. 이는 곧 rI ( gI 및 I ( r−1gI ( r−1gr−1gI

를 의미한다. 여기서 h := r−1gr−1g는 G+의 원소이므로, 주장 2.21에 의해 [x, φ(x)] ( hI =

[hx, hφ(x)] = [hx, φ(hx))
]
임을 얻는다. 이는 φ가 순증가한다는 사실에 모순이다.

(2) rI ) [rφ(x), φrφ(x)]: 이 경우, r′ := r−1, y := rφ(x), J := [y, φy]에 대해 생각해 보면 r′J (
r′rI = [φ−1(r′rφ(x)), r′rφ(x)]가 성립한다. 그러면 위와 비슷한 이유로 r′J ( gJ = g[y, φ(y)]

이도록 하는 g ∈ G+를 찾을 수 있다. 그러면 r′−1gr′−1g는 G+의 원소이면서 J를 그보다 더 큰

구간으로 보내는데, 이는 φ가 순증가한다는 사실에 모순이다.

(3) rx = φrφr(x)가 성립한다.

이중 세번째 경우만이 가능하므로 증명이 끝난다. �

즉 G \ G+의 임의의 원소 r은 임의의 x ∈ S1가 주어졌을 때 그 φ-궤도 {x, φx, . . . , φN−1x}를 다
른 φ-궤도 {rx, φ−1(rx), φ−2(rx), . . . , φ−(N−1)rx} = {rx, φ(rx), . . . , φN−1(rx)}로 보낸다는 것을 알
수 있고, 따라서 G 전체가 몫공간인 S1에도 자연스럽게 작용한다. 즉, π와 호환되는 군 맞춤 사상

ρ : G→ ρ(G)가 존재한다.
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이제 몫공간 S1에서 임의의 닫힌 구간 I가 주어졌을 때, S1 \ I 안의 점 c를 하나 잡으면 π−1(I)는 N

개의연결성분으로이루어져있으며각각은 [c, φ(c)), [φ(c), φ2(c)), . . . , [φN−1(c), φN (c) = c)안에포함

되어있다.예를들어 [c, φ(c))안에있는연결성분 Ĩ를택하면, Ĩ는축약가능하고 infg∈G diam(gĨ) = 0

이 성립한다. 이 사실은 덮음 사상 π를 통해서도 전달되므로 infg∈G diam(ρ(g)I) = 0 또한 성립한다.

따라서 ρ(G)의 작용은 강하게 팽창적이다. �

여기서 근접성에 관한 논의를 잠깐 마무리짓겠다. 만약 Homeo(S1)의 어떤 부분군 G의 작용이

최소한이라면, G의 작용은 균일연속하거나, 팽창적이되 강하게 팽창적이지는 않거나, 혹은 강하게 팽

창적이다. G의 작용이 균일연속한 경우, 켤레바꾸기를 통해 S1의 등거리사상 군으로 나타낼 수 있다.

이 경우 임의의 두 점 x, y ∈ S1 사이 거리는 G의 작용에 의해 보존되므로, 이 작용은 근접적일 수

없다. 만약 G의 작용이 팽창적이되 강하게 팽창적이지는 않다면, 보조정리 2.19에서 기술하는 원의

자가 덮음 사상 π : S1 → S1이 존재해 G의 작용과 π는 호환 가능하고, 몫공간 S1에서의 G의 작용은

강하게 팽창적이다. 이 경우 π는 차수가 1보다 큰 덮음 사상이어야 한다. 이제 어떤 점 y ∈ S1을 잡은

뒤 π−1(y) 안의 서로 다른 두 점 a, b ∈ π−1(y)을 고르면, 그 어느 g ∈ G를 가져와도 ga 및 gb는 같은

π-값을가지는다른점들이다.이러한점들사이거리는 0에한없이가까울수없기에 (보조정리 2.19의

증명에서 d(x, θ(x)) > εG가항상성립했음을기억하라), infg∈G d(ga, gb) > 0이다.따라서이경우에도

G의 작용은 근접적일 수 없다. 요약하자면, Homeo(S1)의 어떤 부분군 G의 작용이 최소한이라는 가정

하에, G의 작용이 만약 근접적이라면 반드시 강하게 팽창적이어야 한다.

이제 어떤 G ≤ Homeo(S1)의 작용이 최소한이고 강하게 팽창적이라면 G 안에는 서로 겹치지 않

는 열린 구간 네 개에 결부된 Schottky 순서쌍이 존재함을 관찰하자. 이를 위해 임의의 (원 전체가

아닌) 열린 구간 I을 생각하자. 그러면 I도 J := (
∫
I1)

c도 축약가능한 구간이므로 limn diam(gnI) =

limn diam(hnJ) = 0이게끔 하는 G의 원소 나열 (gn)n>0 및 (hn)n>0이 존재한다. 이때, {gnI : n > 0}
의 집적점 x 및 {hnJ : n > 0}의 집적점 y를 서로 다른 것으로 잡을 수 있는지 살펴보자. 이것이 불

가능한 유일한 경우는 (gnI)n>0 및 (hnJ)n>0가 모두 같은 점 x ∈ S1로 수렴할 때뿐인데, 이 경우에는

x를 S1 \ {x} 안으로 보내는 어떤 g′ ∈ G를 잡으면 (gnI)n>0의 집적점인 x와 (g′hnJ)n>0의 집적점인

g′x는 서로 다른 점이 된다. 물론 g′hnJ의 크기 또한 0으로 수렴하므로, (hn)n>0 대신 (g′hn)n>0을

사용함으로써 앞의 질문에 대답할 수 있다. 즉, G 안의 적당한 원소 나열 (gn)n>0 및 (hn)n>0 및 원

위의 서로 다른 점 x, y ∈ S1가 존재하여

diam(gnI ∪ x)→ 0, diam(hnJ ∪ x)→ 0

이게끔 할 수 있다.

이제 {x, y}와 {fx, fy}가 원소를 공유하지 않게끔 하는 f ∈ G를 찾고자 한다. 먼저, G의 작용이

최소한이기에 f1(x), . . . , f6(x)가 (x, y)안의서로다른여섯개의점이되도록하는 G의원소 f1, . . . , f6

를 찾을 수 있다. 여기서 fi들 중 어느 하나라도 y를 {x, y} 밖의 점으로 보내면 그 원소를 f로 쓰면

된다. 그렇지 않고 예를 들어 f1y, f2y 및 f3y가 {x, y} 안의 어떤 한 점 p로 일치한다고 해보자. 그러면

p를 (x, y) 안으로 보내는 어떤 원소 f ′ ∈ G가 존재할 텐데, 이때 f ′f1y, f
′f2y 및 f ′f3y는 서로 다른 세

점이기에, 이들 중 적어도 하나는 x 도 y도 아니다. 따라서 f ′fiy /∈ {x, y}인 i ∈ {1, 2, 3}을 잡을 수
있고, 이때 f ′fix = f ′p 또한 {x, y} 바깥에 있어 f ′fi를 f로 쓸 수 있다.

이제, 충분히 큰 n에 대해, gnI, hnJ, fgnI, fhnJ는 서로 다른 네 점에 충분히 가까운 구간들이므

로 서로 겹치지 않는다. 이제 F = hng
−1
n 및 G = fhng

−1
n f를 생각하면 F는 gnI

c를 hnJ로 보

내고, F−1는 hnJ
c를 gnI로 보내며, G는 fgnI

c를 fhnJ로, G−1는 fhnJ
c를 fgnI로 보낸다. 이제

gnI, hnJ, fgnI, fhnJ를 모두 살짝씩 키워 열린 구간으로 만들되 여전히 서로 겹치지 않게끔 할 수
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있고, (F,G)는 이 구간들에 결부된 Schottky 순서쌍이 된다. 이로써 정리 1.1 및 정리 1.2의 증명이

끝난다.

References

[Ghy01] Étienne Ghys. Groups acting on the circle. Enseign. Math. (2), 47(3-4):329–407, 2001.

[Mar00] Gregory Margulis. Free subgroups of the homeomorphism group of the circle. C. R. Acad. Sci. Paris Sér. I

Math., 331(9):669–674, 2000.

[Nav11] Andrés Navas. Groups of circle diffeomorphisms. Chicago Lectures in Mathematics. University of Chicago

Press, Chicago, IL, spanish edition, 2011.

Cornell University, 583 Malott Hall, Ithaca, NY, USA

Email address: inhyeokchoi48@gmail.com

18


	1. ..
	2. .. ......
	2.1. ..... . ......(conjugation and semiconjugation)
	2.2. ...(Expansivity) .. ...(Proximality)

	References

